matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenParabel der Schar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - Parabel der Schar
Parabel der Schar < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parabel der Schar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:13 Mi 29.11.2006
Autor: Informacao

Aufgabe
Welche Parabel der schar y=x²+b berührt  die gerade mit der gleichung y=4x-3? gib die berührpunkte an.  

hallo,

also ich wollte das so gleichsetzen:

4x-3=x²+b
x²+b-4x+3=0

jetzt kome ich aber nicht weiteR??

ich kann doch keine pq formel nehmen, da stört mich das b..oder denk ich falsch?

Informacao

        
Bezug
Parabel der Schar: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Mi 29.11.2006
Autor: M.Rex


> Welche Parabel der schar y=x²+b berührt  die gerade mit der
> gleichung y=4x-3? gib die berührpunkte an.
> hallo,
>  
> also ich wollte das so gleichsetzen:
>  
> 4x-3=x²+b
>  x²+b-4x+3=0

bis hierher korrekt:
Schreib das mal folgendermassen:
[mm] x²-\underbrace{4}_{p}x+\underbrace{(b+3)}_{q}=0 [/mm]

Und jetzt wende mal die p-q-Formel an.

Also:

[mm] x_{1;2}=2\pm\wurzel{4-(b+3)} [/mm]
[mm] =2\pm\wurzel{1-b} [/mm]

Jetzt soll die Gerade ja die Parabel berühren, das heisst, es soll nur einen gemeinsamen Punkt geben. Das heisst [mm] x_{1} [/mm] und [mm] x_{2} [/mm] aus der p-q-formel sind gleich, und das wiederum funktioniert nur dann, wenn der Wurzelterm =0 ist.
Das heisst, es muss gelten:

1-b=0, also b=1

Für den Berührpunkt - es gibt ja nur einen - von y=x²+1 und  der Tangenten t(x)=4x-3 gilt:
x²+1=4x-3
[mm] \gdw [/mm] x²-4x+4=0
[mm] \gdw [/mm] (x-2)²=0
Das heisst, der Berührpunkt ist B(2/f(2)), wobei f(2) noch zu berechnen ist.

Hilft das weiter?

Marius

Bezug
                
Bezug
Parabel der Schar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:43 Mi 29.11.2006
Autor: Informacao

hi,

danke! das hat mir sehr geholfen!

viele grüße
informacao

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]