matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenParabel - Tangente durch 0/0
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Ganzrationale Funktionen" - Parabel - Tangente durch 0/0
Parabel - Tangente durch 0/0 < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parabel - Tangente durch 0/0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:15 Mo 19.01.2009
Autor: Ph0eNiX

Aufgabe
An die Parabel [mm] y=x^2+8x+9 [/mm] werden alle Tangenten gelegt, die durch den Ursprung laufen. Berechnen Sie die Gleichung dieser Tangenten.

Hallo zusammen
Bei dieser Aufgabe schaffe ich den Anfang nicht. Man muss wol den Ursprung (0/0) irgendwie mit [mm] y=x^2+8x+9 [/mm] gleichsetzen, nur frage ich mich, wie das gehen soll..

Danke für eure Hilfe!

cu Ph0eNiX


PS: Kennt jemand ne Website mit solchen oder ähnlichen Aufgaben inkl. Lösungen & Erklärungen wie man solche Aufgaben angehen muss? (Exp. Gleichung, Tangente, lin. Gleichung zusammen kombiniert)

        
Bezug
Parabel - Tangente durch 0/0: Bestimmungsgleichungen
Status: (Antwort) fertig Status 
Datum: 21:46 Mo 19.01.2009
Autor: Loddar

Hallo Ph0enix!


Eine Gerade durch den Ursprung hat die Form $g(x) \ = \ m*x$ .

Damit der Punkt $B \ [mm] \left( \ b \ | \ f(b) \ \right)$ [/mm] ein Berührpunkt ist, muss gelten:
$$f(b) \ = \ g(b)$$
$$f'(b) \ = \ g'(b)$$
Mit diesen beiden Gleichungen kannst Du nun $b_$ ermitteln.


Gruß
Loddar


Bezug
        
Bezug
Parabel - Tangente durch 0/0: Materialien
Status: (Antwort) fertig Status 
Datum: 09:15 Di 20.01.2009
Autor: informix

Hallo Ph0eNiX,

> An die Parabel [mm]y=x^2+8x+9[/mm] werden alle Tangenten gelegt, die
> durch den Ursprung laufen. Berechnen Sie die Gleichung
> dieser Tangenten.
>  Hallo zusammen
>  Bei dieser Aufgabe schaffe ich den Anfang nicht. Man muss
> wol den Ursprung (0/0) irgendwie mit [mm]y=x^2+8x+9[/mm]
> gleichsetzen, nur frage ich mich, wie das gehen soll..
>  
> Danke für eure Hilfe!
>  
> cu Ph0eNiX
>  
>
> PS: Kennt jemand ne Website mit solchen oder ähnlichen
> Aufgaben inkl. Lösungen & Erklärungen wie man solche
> Aufgaben angehen muss? (Exp. Gleichung, Tangente, lin.
> Gleichung zusammen kombiniert)

Eigentlich müsstest du dich nur duch den Matheraum klicken, um eine Vielzahl ähnlicher Aufgaben mit Tipps und Lösungen zu finden...
Wenn du ein Forum aufrufst, gibt es häufig im Kopf des Forums einen Link Materialien, z.B. Materialien zu ganz-rat. Funktionen.

Auch dort kannst du weitere Aufgaben und Hilfen finden.

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]