matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungParabel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - Parabel
Parabel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parabel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:08 So 26.10.2008
Autor: Rechenhexe

Aufgabe
Gerade g: -x + y = 1
Scheitel S (1/1)

Hallo,
ich habe ein kleines Problem.
Ich sollte eine Parabel finden, die S als Scheitel und g als Tangente hat.
Habe die Aufgabe soweit gelöst und die Parabel [mm] (y-1)^2=4(x-1) [/mm] gefunden.

Nun ist eine weitere Frage der Aufgabe, ob die Parabel eindeutig bestimmt ist.
Ich denke es gibt noch weitere Parabeln, die die Bedingungen erfüllen, kann aber nicht genau begründen warum.
Vielleicht könnte ich die Parabel um den Scheitel drehen (Drehwinkel kleiner 45°). Bin ich da auf dem richtigen Weg?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Parabel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:31 So 26.10.2008
Autor: abakus


> Gerade g: -x + y = 1
> Scheitel S (1/1)
>  Hallo,
>  ich habe ein kleines Problem.
>  Ich sollte eine Parabel finden, die S als Scheitel und g
> als Tangente hat.
>  Habe die Aufgabe soweit gelöst und die Parabel
> [mm](y-1)^2=4(x-1)[/mm] gefunden.
>  
> Nun ist eine weitere Frage der Aufgabe, ob die Parabel
> eindeutig bestimmt ist.
>  Ich denke es gibt noch weitere Parabeln, die die
> Bedingungen erfüllen, kann aber nicht genau begründen
> warum.
>  Vielleicht könnte ich die Parabel um den Scheitel drehen
> (Drehwinkel kleiner 45°). Bin ich da auf dem richtigen
> Weg?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hallo,
wenn die Parabel den Scheitelpukt (1;1) hat, muss sie die Form [mm] y=a*(x-1)^2+1 [/mm] haben.
Die erste Ableitung der Parabel [mm] y=a(x-1)^2+1 [/mm]  ist y'=2a(x-1), und das ist eine lineare Funktion (mit einem Anstieg [mm] \ne [/mm] 0).
Damit kann es nur eine einzige Stelle geben, an der diese Funktion den Wert 1 (diesen Anstieg hat die Tangente y=x+1) besitzt.
An dieser Stelle gilt
1=2a(x-1) und damit [mm] x=1+\bruch{1}{2a} [/mm]
An dieser Stelle gilt für den y-Wert der Parabel [mm] y=a*(1+\bruch{1}{2a})^2+1. [/mm]
Da das ein Punkt der Tangente ist, muss gleichzeitig auch y=x+1 gelten.
Überprüfe nun, ob es ein oder mehrere a gibt, die das erfüllen. (Denke auch daran, in welche Richtung die Parabel geöffnet sein muss.)
Gruß Abakus

Bezug
                
Bezug
Parabel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:38 So 26.10.2008
Autor: Rechenhexe

Hallo Abakus,
den Weg bin ich nicht gegangen da unter der Aufgabe die Bemerkung steht:
Verwenden Sie bei er Bearbeitung der Aufgabe keine Differentialrechnung!
Daher dachte ich, ich komme mit der Drehmatrix evtl weiter.
Dennoch vielen Dank für die schnelle Antwort!

Die Rechenhexe

Bezug
                        
Bezug
Parabel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:47 So 26.10.2008
Autor: abakus


> Hallo Abakus,
>  den Weg bin ich nicht gegangen da unter der Aufgabe die
> Bemerkung steht:
>  Verwenden Sie bei er Bearbeitung der Aufgabe keine
> Differentialrechnung!
>  Daher dachte ich, ich komme mit der Drehmatrix evtl
> weiter.
>  Dennoch vielen Dank für die schnelle Antwort!
>  
> Die Rechenhexe

Dann suche nach gemeinsamen Punkten der Funktionsgraphen [mm] y=a(x-1)^2+1 [/mm] und y=x+1.
Je nach gewähltem a gibt es zwei, einen oder keinen gemeinsamen Punkt. Für den Tangentenfall interessieren nur die Werte a mit genau einer Lösung.
Du bis schnell fertig.


Gruß Abakus


Bezug
                                
Bezug
Parabel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:05 So 26.10.2008
Autor: Rechenhexe

Das Problem ist, dass es sich nicht um eine Funktion handelt. Es geht hier um eine Punktmenge. (Kegelschnitte) Daher auch der Ansatz [mm] y^2=... [/mm]
Viele Grüße

Bezug
                                        
Bezug
Parabel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:15 So 26.10.2008
Autor: abakus


> Das Problem ist, dass es sich nicht um eine Funktion
> handelt. Es geht hier um eine Punktmenge. (Kegelschnitte)
> Daher auch der Ansatz [mm]y^2=...[/mm]
>  Viele Grüße


Hallo,
wenn es so allgemein ist, dann könnte die Parabel auch schräg liegen?
Ich habe jedenfalls mit meinem Ansatz [mm] y=a(x-1)^2+1 [/mm] als einzig möglichen Wert a=-0,25 erhalten.
Wenn du in  einer dazu senkrechten Achsenlage auch eine Parabel erhalten hast, wird es wohl dazwischen noch mehr geben...
Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]