matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNaive MengenlehrePaare (x,y) = {{x},{x,y}} ?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Naive Mengenlehre" - Paare (x,y) = {{x},{x,y}} ?
Paare (x,y) = {{x},{x,y}} ? < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Paare (x,y) = {{x},{x,y}} ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:03 Di 13.10.2009
Autor: ChopSuey

Aufgabe
$\ (x,y) = [mm] \{ \{x\}, \{x,y\}\} [/mm] $

Hallo,

die obige Gleichung wurde heute an die Tafel geschrieben, um Zahlenpaare wie $\ (x,y) $ eindeutig durch die Mengenschreibweise zu definieren. Dabei ging es um das kartesische Produkt zweier Mengen.

Aber was soll die rechte Seite? Ich komm nicht dahinter. Ich sehe das in der Form zugegebenermaßen auch zum ersten mal.

Würde mich freuen, wenn mich jemand aufklärt.

Viele Grüße
ChopSuey




        
Bezug
Paare (x,y) = {{x},{x,y}} ?: Antwort
Status: (Antwort) fertig Status 
Datum: 04:40 Di 13.10.2009
Autor: felixf

Hallo ChopSuey

> [mm]\ (x,y) = \{ \{x\}, \{x,y\}\}[/mm]
>  
> die obige Gleichung wurde heute an die Tafel geschrieben,
> um Zahlenpaare wie [mm]\ (x,y)[/mm] eindeutig durch die
> Mengenschreibweise zu definieren. Dabei ging es um das
> kartesische Produkt zweier Mengen.

Ja.

> Aber was soll die rechte Seite? Ich komm nicht dahinter.
> Ich sehe das in der Form zugegebenermaßen auch zum ersten
> mal.

Normalerweise sieht man das auch nur einmal, und ab dann benutzt man immer die Schreibweise $(a, b)$. Irgendwie muss man $(a, b)$ ja definieren, und da man als Grundaxiome meist nur die Axiome der Mengenlehre voraussetzt, muss man etwas mit ihnen machen. Und mit denen laesst sich einfach zeigen, dass man zu Mengen $x, y$ (die Grundobjekte in der Mengenlehre sind immer Mengen) die Menge [mm] $\{ \{ x \}, \{ x, y \} \}$ [/mm] konstruieren laesst.

Die Definition oben macht Sinn: damit gilt $(x, y) = (a, b)$ genau dann, wenn $x = a$ und $y = b$ ist. Dies sollte man sich ueberlegen:

Wenn $(x, y) = (a, b)$ ist, also [mm] $\{ \{ x \}, \{ x, y \} \} [/mm] = [mm] \{ \{ a \}, \{ a, b \} \}$, [/mm] dann ist [mm] $\{ x \}$ [/mm] ein Element der zweiten Menge. Da [mm] $\{ x \}$ [/mm] genau ein Element enthaelt, muss [mm] $\{ x \} [/mm] = [mm] \{ a \}$ [/mm] sein: daraus folgt aber $a = x$. Damit muss [mm] $\{ x, y \} [/mm] = [mm] \{ a, b \}$ [/mm] sein. Ist $x = y$, so ist [mm] $\{ x, y \}$ [/mm] einelementig und ebenso [mm] $\{ a, b \}$, [/mm] also folgt $b = a = x = y$. Ist $x [mm] \neq [/mm] y$, so ist [mm] $\{ b \} [/mm] = [mm] \{ a, b \} \setminus \{ a \} [/mm] = [mm] \{ x, y \} \setminus \{ x \} [/mm] = [mm] \{ y \}$, [/mm] womit $y = b$ ist.

Ich hoffe das hilft dir weiter...

LG Felix


Bezug
                
Bezug
Paare (x,y) = {{x},{x,y}} ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:04 Di 13.10.2009
Autor: ChopSuey

Hallo Felix,

vielen Dank für Deine ausführliche Erklärung.
Hab's sofort verstanden.

Tolle Sache!
Grüße
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]