matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikPHI
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stochastik" - PHI
PHI < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

PHI: Frage
Status: (Frage) beantwortet Status 
Datum: 18:21 Do 09.06.2005
Autor: Mucki85

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hi!
Ich habe folgende Frage:
Inwiefern ist die "Phi"-Funktion in der Stochastik eine e-Funktion?
Wie lautet sie überhaupt und waran wendet man sie an?
Danke im Voraus!



        
Bezug
PHI: Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 Do 09.06.2005
Autor: GenerationCX

hi!

also, dass ist nicht die phi-funktion, sondern die kurve der dichtefunktion N(0,1). das ist die standardnormalverteilung.

die formel lautet:

f(x) =  [mm] \bruch{1}{ \wurzel{2 \pi}} \* e^{- \bruch{ x^{2}}{2} } [/mm]

um nun zu bestimmen, welche wahrscheinlichkeit ein intervall I =[a,b] trägt, ist der flächeninhalt unter der glockenkurve über dem intervall I zu berechnen. Prinzipiell geht das mit hilfe der integralrechnung:

P(X [mm] \in [/mm] I) =  [mm] \integral_{a}^{b} [/mm] {f(x) dx}

meistens willst du wissen, welche wahrscheinlichkeit bis zu X ist:
die phi-tabelle (phi-werte) sind die flächeninhalte von -  [mm] \infty [/mm] bis X :

F(x) = phi(x) =  [mm] \integral_{- \infty}^{x} [/mm] {f(t) dt}

wegen der symmetrie der glockenkurve ist phi(-x) = 1 - phi(+x)

damit lässt sich die wahrscheinlichkeit jedes intervalls leicht durch subtraktion zweier tabellenwerte ermitteln:

[mm] P(X\in [/mm] [a,b]) = phi(b) - phi(a)

also, die phi-tabelle ist nur eine rechenhilfe, da man damit das integral umgeht.

hoffe geholfen zu haben.

lg stefan

Bezug
        
Bezug
PHI: MatheBank Wikipedia
Status: (Antwort) fertig Status 
Datum: 15:09 Mo 13.06.2005
Autor: informix

Hallo Mucki,
[willkommenmr]

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Hi!
>  Ich habe folgende Frage:
>  Inwiefern ist die "Phi"-Funktion in der Stochastik eine
> e-Funktion?
>  Wie lautet sie überhaupt und waran wendet man sie an?
>  Danke im Voraus!
>  

[guckstduhier] ... []http://de.wikipedia.org/wiki/Normalverteilung


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]