matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenPDGL mittels FEM
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Partielle Differentialgleichungen" - PDGL mittels FEM
PDGL mittels FEM < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

PDGL mittels FEM: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:50 Sa 28.03.2009
Autor: sabadei

Aufgabe
Gegeben ist folgende PDGL auf [mm] \Omega: [/mm]

[mm] \bruch{\partial^2\,p}{\partial\,x^2}+\left(1+3\epsilon\,\cos\left(x\right)\right)\bruch{\partial^2\,p}{\partial\,y^2}=1, \qquad 0\le\epsilon\le\bruch{1}{3}, [/mm]
p(x)=0 [mm] \forall x\in\bruch{\partial\,\Omega}{\partial\,x} [/mm]

Es ist eine Lösung mittels FEM gesucht. [mm] \Omega [/mm] wird mittels rechteckige 4-Knoten Elemente mit den Formfunktionen

[mm] N=[(1+\xi)(1+\eta) \quad (1-\xi)(1+\eta) \quad (1-\xi)(1-\eta) \quad (1+\xi)(1-\eta)] [/mm]

unterteilt.

Hallo liebe Forummitglieder,

ich versuche gerade diese Aufgabe zu lösen, komme aber nicht weiter. Ich gehe dabei wie folgt vor:

Übergang zu der Variationsformulierung liefert

[mm] \int_{\Omega}\left(\bruch{\partial\,p}{\partial\,x}\bruch{\partial\,v}{\partial\,x}+\left(1+3\epsilon\,\cos\left(x\right)\right)\bruch{\partial\,p}{\partial\,y}\bruch{\partial\,v}{\partial\,x}\right)\,d\Omega=\int_{\Omega}1\,v\,d\Omega [/mm]

und mit den Formfunktionen

[mm] \bigcup^{Elemente}\int_{\Omega}\left(N_{,x}^T N_{,x}+\left(1+3\epsilon\,\cos\left(x\right)\right)\N_{,y}^T N_{,y}\right)\,d\Omega P=\bigcup^{Elemente}\int_{\Omega}N^T\,d\Omega. [/mm]

Wegen den Koordinatentransformationen

[mm] x(\xi)=\bruch{(x_a+x_e)}{2}+\bruch{(x_a-x_e)}{2}\xi [/mm]
[mm] y(\eta)=\bruch{(y_a+y_e)}{2}+\bruch{(y_a-y_e)}{2}\eta [/mm]

[mm] (x_a,x_e,y_a,y_e [/mm] - Elementegrenzen)

setze ich dabei

[mm] (a=\bruch{(x_a+x_e)}{2}, b=\bruch{(x_a-x_e)}{2}, c=\bruch{(y_a-y_e)}{2}) [/mm]

[mm] \int_{\Omega}N_{,x}^T N_{,x}\,d\Omega [/mm] = [mm] \int_{-1}^1 \int_{-1}^1 N_{,\xi}^T N_{,\xi}\bruch{bc}{b^2}\,d\xi\,d\eta [/mm]

[mm] \int_{\Omega}\left(1+3\epsilon\cos\left(x\right)\right)N_{,y}^T N_{,y}\,d\Omega [/mm] = [mm] \int_{-1}^1 \int_{-1}^1\left(1+3\epsilon \cos\left(a+b\xi\right)\right)N_{,\eta}^T N_{,\eta}\bruch{bc}{c^2}\,d\xi\,d\eta [/mm]

[mm] \int_{\Omega}N^T\,d\Omega=\int_{-1}^1\int_{-1}^1N^T bc\,d\xi\,d\eta. [/mm]

Dann werden die Integrale ausgewertet. Für den 2. bekomme ich z.B.

[mm] I_1=\int_{-1}^1 \int_{-1}^1\left(1+3\epsilon \cos\left(a+b\xi\right)\right)(1+\xi)(1+\xi)\bruch{bc}{c^2}\,d\xi\,d\eta=\bruch{16}{3}+ \epsilon\bruch{(12 (-2 \cos(a) \sin(b) + 2 b (\cos(a+b) + b \sin(a+b))))}{b^3} [/mm]
[mm] I_2=\int_{-1}^1 \int_{-1}^1\left(1+3\epsilon \cos\left(a+b\xi\right)\right)(1+\xi)(1-\xi)\bruch{bc}{c^2}\,d\xi\,d\eta=\bruch{8}{3}+\epsilon \bruch{(24 \cos(a) (-b \cos(b) + \sin(b)))}{b^3} [/mm]
[mm] I_3=\int_{-1}^1 \int_{-1}^1\left(1+3\epsilon \cos\left(a+b\xi\right)\right)(1-\xi)(1-\xi)\bruch{bc}{c^2}\,d\xi\,d\eta=\bruch{16}{3} [/mm] + [mm] \epsilon \bruch{(8 (9 b \cos(a-b) - 9 (b^2 \sin(a-b) + \cos(a)\sin(b))))}{b^3} [/mm]

und forme sie zu der lokalen Steifigkeitsmatrix zusammen:

[mm] \pmat{ I_1 & I_2& -I_2& -I_1 \\ I_2 & I_3& -I_3& -I_2\\ -I_2 & -I_3& I_3& I_2\\ -I_1 & -I_2& I_2& I_1} [/mm]


Anschließend wird die globale Steifigkeitsmatrix zusammengesetzt. Die Lösung ist aber falsch. Der Fehler steigt mit dem zunehmenden [mm] \epsilon. [/mm] Für [mm] \epsilon=.6 [/mm] bekommt man etwa 10%, für [mm] \epsilon=.99 [/mm] etwa 40%. Da man für [mm] \epsilon [/mm] gegen 0 exakte Werte bekommt, vermute ich, dass etwas bei der Auswertung des Integrals mit [mm] \cos [/mm] falsch ist, oder irgendwo bei der Herleitung (Übergang zu der Variationsformulierung?) ein Fehler passiert.

(die Lösung habe ich mit der von Matlab (PDE-Toolbox) und Comsol verglichen. Beide Progamme bekommen etwa dasselbe raus. Bei der Erhöhung der Elementenzahl gibt es keine Verbesserungen, meine Lösung konvergiert also gegen einen anderen Wert. Integrale habe ich mit Mathematica und TI ausgewertet (in beiden Fällen gleich) und bereits sehr oft überprüft.)

Hoffe, dass jemand eine Idee hat.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
PDGL mittels FEM: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 So 05.04.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]