matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenPDGL erster Ordnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Partielle Differentialgleichungen" - PDGL erster Ordnung
PDGL erster Ordnung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

PDGL erster Ordnung: Hilfe bei Lösung
Status: (Frage) überfällig Status 
Datum: 15:53 Mi 16.11.2011
Autor: teflonefeu

Ich möchte folgende PDGL lösen:

[mm] a\cdot u_x+b \cdot u_y=1 [/mm]

[mm] u_x [/mm] ist die Ableitung der Funktion u(x,y) nach x und entsprechend ist [mm] u_y [/mm] die Ableitung nach y. a und b sind Konstanten, die nicht von x oder y abhängen.

Ich habe im Buch von Meyberg-Vachenauer "Höhere Mathematik für Ingenieure"  gelesen, dass es sich hierbei um eine lineare PDGL mit konstante Koeffizienten handelt und dass man eine homogene und eine heterogene Lösung bestimmen kann.
Die homogene Lösung soll wohl g(bx-ay) sein und g soll irgendeine Funktion sein. Hier hat mein Ingenieur Gehirn schon mal ein Problem. Ich habe gelesen, dass dies anschaulich einer Verschiebung einer bestimmten Kurve entspricht, bin daraus aber nicht schlau geworden.

Weiterhin ist dort auch die partikuläre Lösung angegeben:

[mm] u(x,y)=\frac{1}{2ab}\integral_{bx_0+ay_0}^{bx+ay}{F(\xi,ax-by) d\xi} [/mm]

[mm] \xi [/mm] kommt aus einer Substitution und ist gleich (bx+ay) und F(..) ist in meiner PDGL gleich 1. Somit wird das Integral zu
[mm] \integral_{bx_0+ay_0}^{bx+ay}{1 d\xi} [/mm]
und das ist ja dann wohl
[mm] u(x,y)=\frac{1}{2ab}((bx+ay)-(bx_0+ay_0)) [/mm]

Also ingesamt mit homogener und partikulärer Lösung ergibt sich dann:

[mm] u(x,y)=\frac{1}{2ab}((bx+ay)-(bx_0+ay_0))+g(bx-ay) [/mm]


So schön das jetzt aussehen mag, so unverständlich ist aber auch, was nun [mm] x_0 [/mm] und [mm] y_0 [/mm] sein sollen.

Die Randbedingungen für die PDGL lauten:

u(x=0,y)=0 und u(x,y=0)=0

1)Muss ich die Randbedingungen in die allgemeine Lösung einsetzen und [mm] x_0 [/mm] und [mm] y_0 [/mm] ausrechnen ?

2) Was mache ich mit der homogenen Lösung g(bx-ay) ? Kann ich hier einfach bx-ay schreiben, wenn g beliebig sein kann, wäre das ja nicht falsch.

Ich bin dankbar für jeden Hinweis. Mir mangelt es am Verständnis dieser Art Lösung. Mit gewöhnlichen Lösungen und Lösungsmethoden habe ich sonst eigentlich keine Probleme.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
PDGL erster Ordnung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Do 24.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]