matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenPDG
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Partielle Differentialgleichungen" - PDG
PDG < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

PDG: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 Di 29.12.2009
Autor: Lyrone

Aufgabe
Bestimmen Sie die allgemeine Lösung [mm]u = u(x,y)[/mm] der partiellen Differntialgleichung

[mm]u_{xx} - u_{xy} - 2u_{yy} + u_x+u_y = 0[/mm]

Hallo,

zu dieser Aufgabe habe ich aus einer Musterlösung das Ergebnis, es lautet:

[mm]u(x,y) = G(2x + y) e^{(y-x)/3} + H(x - y)[/mm].

Die Aufgaben dieser Art sind mir gänzlich unbekannt. Habe mich in Wikipedia eingelesen, dennoch hat es nicht den gewünschten Erfolg gebracht. Ich habe nicht mal einen Ansatz wie ich hier rangehen könnte. Durch Wiki weiss ich nun das es 3 Arten gibt elliptisch, parabolisch, hyperbolisch.
Wie kann ich erkennen, welche Art zu welcher Gleichung gehört? Mir ist klar das es um größer, kleiner, gleich 0 geht. Aber wie baue ich die Gleichung um, so das ich es auch sichtbar mache? Oder handelt es sich hier um eine parabolische Gleichung, da die Gleichung = 0 ist?

Für jegliche Hilfe bin ich dankbar, auch von mir aus in Form von externen Links, Onkel google habe ich schon befragt.

Schönen Gruß,
Lyrone.

        
Bezug
PDG: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Di 29.12.2009
Autor: MathePower

Hallo Lyrone,

> Bestimmen Sie die allgemeine Lösung [mm]u = u(x,y)[/mm] der
> partiellen Differntialgleichung
>  
> [mm]u_{xx} - u_{xy} - 2u_{yy} + u_x+u_y = 0[/mm]
>  Hallo,
>  
> zu dieser Aufgabe habe ich aus einer Musterlösung das
> Ergebnis, es lautet:
>  
> [mm]u(x,y) = G(2x + y) e^{(y-x)/3} + H(x - y)[/mm].
>  
> Die Aufgaben dieser Art sind mir gänzlich unbekannt. Habe
> mich in Wikipedia eingelesen, dennoch hat es nicht den
> gewünschten Erfolg gebracht. Ich habe nicht mal einen
> Ansatz wie ich hier rangehen könnte. Durch Wiki weiss ich
> nun das es 3 Arten gibt elliptisch, parabolisch,
> hyperbolisch.
> Wie kann ich erkennen, welche Art zu welcher Gleichung
> gehört? Mir ist klar das es um größer, kleiner, gleich 0
> geht. Aber wie baue ich die Gleichung um, so das ich es
> auch sichtbar mache? Oder handelt es sich hier um eine
> parabolische Gleichung, da die Gleichung = 0 ist?


Wie Du den Typ der partiellen DGL bestimmst,
steht in diesem []Wikipedia-Artikel.

Allerdings ist mir nicht klar, wie Du die DGL umbauen musst,
damit der Type der partiellen DGL ersichtlich wird.

Durch Anwendung von linearen Transformationen auf
die Variablen x und y, kommst Du dann auf die Lösung.


>
> Für jegliche Hilfe bin ich dankbar, auch von mir aus in
> Form von externen Links, Onkel google habe ich schon
> befragt.
>  
> Schönen Gruß,
>  Lyrone.


Gruss
MathePower

Bezug
        
Bezug
PDG: Antwort
Status: (Antwort) fertig Status 
Datum: 21:37 Di 29.12.2009
Autor: zahllos

Hallo,

um den Typ zubestimmen betrachtest du die 2x2-Matrix, die sich aus den Koeffizienten der zweiten Ableitungen der gesuchten Funktion bilden läßt.
In diesem Fall bekommst du die Matrix: [mm] \pmat{ 1 & -0,5 \\ -0,5& -2 }. [/mm] Von dieser Matrix bestimmst du die Eigenwerte. Haben alle Eigenwerte das gleiche Vorzeichen, so heißt die Differentialgleichung elliptisch. Haben n-1 EW das gleiche Vorzeichen und der n-te EW das andere Vorzeichen, heißt die DGL hyperbolisch. Haben n-1 EW das gleiche Vorzeichen und der n-te EW ist 0, so heißt die DGL parabolisch.
Falls die Koeffizienten nicht konstant sind, kann sich der Typ auch ändern und nicht jede partielle DGL zweiter Ordnung läßt sich einem dieser drei Grundtypen  zuordnen.


Bezug
        
Bezug
PDG: Antwort
Status: (Antwort) fertig Status 
Datum: 23:27 Di 29.12.2009
Autor: uliweil

Hallo Lyrone,

noch ein Hinweis, der bei der Bestimmung der Koordinatentransformation, die Mathepower angedeutet hat, hilfreich ist:
Mit dem Verfahren, das zahllos beschrieb, kommt heraus, dass die PDE von hyperbolischem Typ ist, das bedeutet, sie läßt sich durch lineare Koordinatentransformation x = [mm] \alpha*r [/mm] + [mm] \beta*s [/mm] und y = [mm] \gamma*r [/mm] + [mm] \delta*s [/mm] auf die Form einer Wellengleichung, also [mm] u_{rs}(r,s) [/mm] = "Ableitungen geringerer Ordnung" bringen und dies ermöglicht dann die getrennte Integration nach r bzw. s.
Gruß
Uli

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]