matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisPBZ von meromorphen Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - PBZ von meromorphen Funktionen
PBZ von meromorphen Funktionen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

PBZ von meromorphen Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:07 Do 21.06.2012
Autor: drossel

Hallo,
ich habe eine Frage zur Partialbruchzerlegung von zB Funktionen wie [mm] \pi*\cot( \pi*z) [/mm]
Es soll gelten
[mm] \pi [/mm] *cot( [mm] \pi*z)=\frac{1}{z}+\summe_{n\in \IZ, n\not=0}(\frac{1}{z-n}+\frac{1}{n}) [/mm]
Wie man das zeigt, ist mir im groben bis auf eine kleine Stelle klar.
Wenn man die Hauptteile [mm] h_n [/mm] bestimmt und man die Summe darüber betrachtet, also [mm] \summe_{n\in \IZ}\frac{1}{z-n}, [/mm] sieht man ja, dass diese nicht konvergiert. Man muss dann zu dieser etwas hinzufügen, s.d. man das ganze kompakt konvergent bekommt und nutzt, dass sich [mm] h_n [/mm] für [mm] n\not=0 [/mm] lokal um den Nullpunkt in eine Taylorreihe entwickeln lässt.
Und hier meine Frage: wie sieht man bzw. woher weiss man, welcher Grad das Taylorpolynom haben muss?
Für das Beispiel hier reicht [mm] h_n(0)=\frac{-1}{n} [/mm]
aber das sehe ich jetzt nur daran, da ich schon weiss, was rauskommen muss und nach einer kleinen Umformung, wenn man [mm] h_n(z)-h_n(0) [/mm] betrachtet, dass es konvergiert. Aber ich kann ja nicht immer bei anderen Beispielen das Taylorpolynom vom Grad 1, Grad 2 etc. ausrechnen und alles prüfen, bis es passt (wie beim rumraten).
Wäre super, wenn mir da jemand weiterhelfen kann!
Gruß

        
Bezug
PBZ von meromorphen Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:26 Fr 22.06.2012
Autor: fred97

Die Antwort auf Deine Frage findest Du im Beweis des Satzes von Mittag-Leffler.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]