matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenPBZ
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Komplexe Zahlen" - PBZ
PBZ < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

PBZ: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 So 28.06.2009
Autor: Towly

Aufgabe
f(s) = [mm] \bruch{6s+24}{s^2+4s+13} [/mm]

Hallo alle miteinander!

# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

So da das geklärt wäre hier mein Problem! Bin gerade schön am laplace-transformieren und da kommt mir so ne blöde komplexe Partialbruchzerlegung aus Mathe I in die Quere.

f(s) = [mm] \bruch{6s+24}{s^2+4s+13} [/mm] = [mm] \bruch{6s+24}{(s+2)^2+9}, [/mm]

= [mm] \bruch{6s+24}{(s+2+3i) * (s+2-3i)} [/mm]

= [mm] \bruch{A}{(s+2+3i)} [/mm] + [mm] \bruch{B}{(s+2-3i)} [/mm]

6s+24 = A * (s+2+3i) + B * (s+2-3i)

Koeffizientenvergleich:

A + B = 6
(2+3i)*A + (2-3i)*B = 24

So, wenn es bis hierhin richtig ist, wie komme ich auf reelle Lösungen für A und B? Dankeschön...

        
Bezug
PBZ: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 So 28.06.2009
Autor: schachuzipus

Hallo Towly,

> f(s) = [mm]\bruch{6s+24}{s^2+4s+13}[/mm]
>  Hallo alle miteinander!
>
> # Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  
> So da das geklärt wäre hier mein Problem! Bin gerade schön
> am laplace-transformieren und da kommt mir so ne blöde
> komplexe Partialbruchzerlegung aus Mathe I in die Quere.
>  
> f(s) = [mm]\bruch{6s+24}{s^2+4s+13}[/mm] =
> [mm]\bruch{6s+24}{(s+2)^2+9},[/mm]
>  
> = [mm]\bruch{6s+24}{(s+2+3i) * (s+2-3i)}[/mm]
>  
> = [mm]\bruch{A}{(s+2+3i)}[/mm] + [mm]\bruch{B}{(s+2-3i)}[/mm]
>  
> 6s+24 = A * (s+2+3i) + B * (s+2-3i)
>  
> Koeffizientenvergleich:
>  
> A + B = 6
>  (2+3i)*A + (2-3i)*B = 24 [ok]
>  
> So, wenn es bis hierhin richtig ist, wie komme ich auf
> reelle Lösungen für A und B? Dankeschön...

gar nicht, $A,B$ sind komplex, $A=3+2i, B=3-2i$

Also [mm] $\frac{6s+24}{s^2+4s+13}=\frac{3+2i}{s+2+3i}+\frac{3-2i}{s+2-3i}$ [/mm]

LG

schachuzipus


Bezug
                
Bezug
PBZ: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:52 So 28.06.2009
Autor: Towly

Ah vielen Dank, habs jetzt auch hinbekommen. Ich hatte nicht gewusst das man bei der Laplace-Inversen-Tabelle dann einfach die komplexe Zahl einsetzt!
Wunderbar, vielen Dank,  jetzt gehts mir besser! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]