matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenP2 in IR3 abbilden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - P2 in IR3 abbilden
P2 in IR3 abbilden < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

P2 in IR3 abbilden: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:12 Mo 10.11.2008
Autor: original_tom

Aufgabe
Man bestimme den Kern(F) durch die Angabe einer Basis des Vektorraumes.
F: V [mm] \to [/mm] W   [mm] V=P_{2} [/mm]  W= [mm] \IR_{3} [/mm]

[mm] F_{3}(a_{0} [/mm] + [mm] a_{1}t [/mm] + [mm] a_{2}t^{2} [/mm] ) = [mm] \vektor {a_{0} - a_{1} \\ a_{1} - a_{2}\\ a_{2} - a_{0} } [/mm]

Hallo,

ich wollte wissen wie ich die Basis des Kerns bei dieser Frage korrekt angebe.

mein Ergebnis ist [mm] a_{0}=a_{1}=a_{2}=a [/mm] für den Kern

Stimmt es dann also wenn ich folgendes schreibe:
[mm] Kern(F_{3}) [/mm] = { [mm] \vektor{ a_{0} \\ a_{1} \\ a_{2} } \in \IR_{3} [/mm] |  [mm] a_{0}=a_{1}=a_{2} [/mm] }

Mit Monombasis für [mm] P_{2} [/mm]  B= { [mm] 1,t,t^{2} [/mm] } und Kern(F(v) = { [mm] \vektor{ a \\ a \\ a } [/mm] | a [mm] \in \IR [/mm] } ergibt sich die Basis des Kerns mit
{ [mm] a\* t^{2} [/mm] + [mm] a\*t [/mm] + a | a [mm] \in \IR [/mm] }

mfg tom

        
Bezug
P2 in IR3 abbilden: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Mo 10.11.2008
Autor: angela.h.b.


> Man bestimme den Kern(F) durch die Angabe einer Basis des
> Vektorraumes.
>  F: V [mm]\to[/mm] W   [mm]V=P_{2}[/mm]  W= [mm]\IR_{3}[/mm]
>  
> [mm]F_{3}(a_{0}[/mm] + [mm]a_{1}t[/mm] + [mm]a_{2}t^{2}[/mm] ) = [mm]\vektor {a_{0} - a_{1} \\ a_{1} - a_{2}\\ a_{2} - a_{0} }[/mm]
>  
> Hallo,
>  
> ich wollte wissen wie ich die Basis des Kerns bei dieser
> Frage korrekt angebe.

Hallo,

gerechnet hast Du alles richtig, ich sage Dir jetzt, wie Du es aufschreiben kannst:

sei [mm] a_{0}+[/mm]  [mm]a_{1}t[/mm] + [mm]a_{2}t^{2}[/mm][mm] \in [/mm] KernF

==> [mm] f(a_{0} [/mm] + [mm]a_{1}t[/mm] + [mm]a_{2}t^{2}[/mm][mm] )=\vektor{0\\0\\0} [/mm]

[mm] ==>\vektor {a_{0} - a_{1} \\ a_{1} - a_{2}\\ a_{2} - a_{0} }=\vektor{0\\0\\0} [/mm]

==> [mm] a_0=a_1=a_2 [/mm]

Also sind alle Polynome der Gestalt  [mm] p=a_0+a_0*x+ a_0x^2= a_0(1+x+x^2) (a_0\in \IR) [/mm] im Kern.

Also wird der Kern aufgespannt vom Polynom [mm] 1+x+x^2, [/mm] welches damit eine Basis des Kerns ist.


> mein Ergebnis ist [mm]a_{0}=a_{1}=a_{2}=a[/mm] für den Kern
>  
> Stimmt es dann also wenn ich folgendes schreibe:
>  [mm]Kern(F_{3})[/mm] =\ { [mm] \vektor{ a_{0} \\ a_{1} \\ a_{2} } \in \IR_{3} [/mm] | [mm] a_{0}=a_{1}=a_{2}\} [/mm]

Wenn Ihr bereits Koordniatenvektoren eineführt habt und b die Basis [mm] (1,x,x^2) [/mm] ist, könntest Du auch schreiben  [mm]Kern(F_{3})[/mm] = [mm] \{\vektor{ a_{0} \\ a_{1} \\ a_{2} }_{(B)} \in \IR_{3} | a_{0}=a_{1}=a_{2} }. [/mm]

Ich würde zunächst aber die wenig verwirrende Variante von oben bevorzugen.

> Mit Monombasis für [mm]P_{2}[/mm]  [mm] B=(1,t,t^2)und [/mm] Kern(F(v) =
> [mm] \{ \vektor{ a \\ a \\ a }| a in \IR \} [/mm] ergibt sich die
> Basis des Kerns mit
> \ { [mm] a\* t^{2} [/mm] + [mm] a\*t+ [/mm] a | a [mm] \in \IR\} [/mm]

Nein, das ist der Kern, und [mm] (1+t+t^2) [/mm] ist die Basis.

Gruß v. Angela


Bezug
                
Bezug
P2 in IR3 abbilden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:32 Mo 10.11.2008
Autor: original_tom

Vielen Dank!

mfg tom

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]