matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)P-stochastisch
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Statistik (Anwendungen)" - P-stochastisch
P-stochastisch < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

P-stochastisch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 Mo 12.01.2009
Autor: Nataliee

Aufgabe
Seien [mm] Z_n, Y_n [/mm] : ­ [mm] \Omega [/mm] -> [mm] \IR [/mm] Zufallsvariablen für n [mm] \in \IN_0 [/mm] mit
[mm] Z_n->Z_0 [/mm] , [mm] Y_n->Y_0 [/mm] jeweils P-stochastisch.
(a) Zeigen Sie: [mm] Z_nY_n [/mm] -> [mm] Z_0Y_0 [/mm] P-stochastisch.
(b) Sei [mm] Z_0 \equiv [/mm] c > 0 konstant.
Zeigen Sie: [mm] Y_n [/mm] * [mm] \bruch{1}{Z_n} [/mm] 1 [mm] _{_{\{Z_n>0\}}} [/mm] -> [mm] Y_0* \bruch{1}{c} [/mm] P-stochastisch.

Hallo,
verstehe ich das richtig das ich bei a) zeigen soll das Z und Y unabhängig sind?

        
Bezug
P-stochastisch: Antwort
Status: (Antwort) fertig Status 
Datum: 14:16 Mo 12.01.2009
Autor: generation...x

Erstens: Wo hast du da ein X?

Zweitens: Nein. Du hast zwei Folgen von Zufallsvariablen, die jeweils konvergieren. Jetzt sollst du zeigen, dass auch das Produkt der jeweiligen Folgenglieder gegen das Produkt der Grenz-Zufallsvariablen konvergiert.

Bei der b) solltest du überlegen, wie [mm]1_{Z_n>0}[/mm] aussieht, wenn [mm]Z_0 = c > 0[/mm].

Bezug
                
Bezug
P-stochastisch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:45 Mo 12.01.2009
Autor: Nataliee

Hallo generation...x,
habe das X korregiert.
Also allgemein kenne ich als Definition:
Die Folge  [mm] Z_n [/mm] konvergiert P-stochastisch gegen [mm] X_0 [/mm] falls
                [mm] \limes_{n\rightarrow\infty} P(d(Z_n,Z_0)>\epsilon) [/mm] = 0 für jedes [mm] \epsilon [/mm] >0.

Aber damit komme ich nicht weiter. Was überseh ich?

Bezug
                        
Bezug
P-stochastisch: Antwort
Status: (Antwort) fertig Status 
Datum: 15:03 Mo 12.01.2009
Autor: generation...x

Also erstmal ist d hier vermutlich der Betrag. Und dann musst du einfach mal einsetzen. Gesucht wird

[mm]\limes_{n\rightarrow\infty} P(|Z_n Y_n - Z_0 Y_0| > \epsilon)[/mm]

Gegeben sind

[mm]\limes_{n\rightarrow\infty} P(|Z_n - Z_0 | > \epsilon) = 0[/mm]
[mm]\limes_{n\rightarrow\infty} P(|Y_n - Y_0 | > \epsilon) = 0[/mm]

Jetzt brauchst du noch eine gescheite Abschätzung...

Bezug
                                
Bezug
P-stochastisch: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:02 Mo 12.01.2009
Autor: Nataliee

Schön jetzt ist klar was man bei a) machen soll die Frage ist nur wie...
Ziel:
Zeigen Sie: $ [mm] Z_nY_n [/mm] $ -> $ [mm] Z_0Y_0 [/mm] $ P-stochastisch.

Die Folge  $ [mm] Z_n Y_n$ [/mm] konvergiert P-stochastisch gegen $ [mm] Z_0Y_0 [/mm] $ falls
[mm]\limes_{n\rightarrow\infty} P(|Z_n Y_n - Z_0 Y_0| > \epsilon)[/mm] ,für jedes [mm] \epsilon [/mm] >0.

Gegeben
$ [mm] \limes_{n\rightarrow\infty} P(d(Z_n,Z_0)>\epsilon) [/mm] $ =0 ,für jedes [mm] \epsilon [/mm] >0.
<=>[mm]\limes_{n\rightarrow\infty} P(|Z_n - Z_0 | > \epsilon) = 0[/mm]
und
[mm]\limes_{n\rightarrow\infty} P(|Y_n - Y_0 | > \epsilon) = 0[/mm],für jedes [mm] \epsilon [/mm] >0.
<=>[mm]\limes_{n\rightarrow\infty} P(|Z_n - Z_0 | > \epsilon) = 0[/mm]

Bin nicht im klaren aber könnte es so funktionieren?:
[mm] \limes_{n\rightarrow\infty} P(|Y_n [/mm] - [mm] Y_0 [/mm] | > [mm] \epsilon)*\limes_{n\rightarrow\infty} P(|Z_n [/mm] - [mm] Z_0 [/mm] | > [mm] \epsilon) [/mm]

[mm] =\limes_{n\rightarrow\infty} P(|Y_n [/mm] - [mm] Y_0 [/mm] | > [mm] \epsilon)* P(|Z_n [/mm] - [mm] Z_0 [/mm] | > [mm] \epsilon) [/mm]

[mm] =\limes_{n\rightarrow\infty} P(|Y_n [/mm] - [mm] Y_0 [/mm] | *| [mm] Z_n [/mm] - [mm] Z_0 [/mm] | > [mm] \epsilon) [/mm]

[mm] =\limes_{n\rightarrow\infty} P(|Y_nZ_n [/mm] - [mm] Y_0Z_0 [/mm] |  > [mm] \epsilon) [/mm]

Demnach ist $ [mm] Z_nY_n [/mm] $ -> $ [mm] Z_0Y_0 [/mm] $ P-stochastisch.

Bezug
                                        
Bezug
P-stochastisch: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mi 14.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]