matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenOszillator, Reibung, Dgl,
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Oszillator, Reibung, Dgl,
Oszillator, Reibung, Dgl, < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Oszillator, Reibung, Dgl,: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:20 Sa 26.03.2016
Autor: sissile

Aufgabe
Die Differentialgleichung
f''(t) + [mm] \alpha [/mm] f'(t) + [mm] \omega [/mm] f(t)=0
[mm] \alpha \in \mathbb{R}, \omega [/mm] >0
ist der harmonische Oszillator mit Reibung. Finden Sie die Lösung indem Sie andermal [mm] f(t)=e^{\lambda t}, \lambda \in \mathbb{C}, [/mm] versuchen.

Hallo
Sei [mm] g(t)=e^{\lambda t} [/mm]
g'(t)= [mm] \lambda e^{\lambda t}, [/mm] g''(t)= [mm] \lambda^2 e^{\lambda t} [/mm]
Ist g eine Lösung der Dgl: 0= g''(t) + [mm] \alpha [/mm] g'(t) + [mm] \omega [/mm] g(t)
0= [mm] \lambda^2 [/mm] + [mm] \alpha \lambda [/mm] + [mm] \omega [/mm] da [mm] e^{\lambda t} \not=0 \forall [/mm] t
[mm] \lambda_{1,2}= \frac{- \alpha}{2} \pm \sqrt{\frac{\alpha^2}{4} - \omega} [/mm]

Sei L der Lösungsraum der Dgl.


Fall 1: [mm] \frac{\alpha^2}{4} [/mm] < [mm] \omega [/mm]
Setze [mm] \omega_0:= \sqrt{\omega - \alpha^2/4} [/mm]
[mm] \lambda_{1,2}= -\frac{\alpha}{2} \pm [/mm] i [mm] \omega_0 [/mm]
[mm] \phi_1 [/mm] (t)= [mm] e^{- \frac{\alpha}{2} t} e^{i \omega_0 t} [/mm]
[mm] \phi_2 [/mm] (t)= [mm] e^{- \frac{\alpha}{2} t} e^{-i \omega_0 t} [/mm]
So ist [mm] \phi_1, \phi_2 \in [/mm] L. Da L ein  komplexer Vektorraum ist, ist ebenfalls jede Linerkombination: [mm] \epsilon_1* \phi_1+ \epsilon_2* \phi_2 \in [/mm] L mit [mm] \epsilon_1, \epsilon_2 \in \mathbb{C} [/mm]

Reelle Lösungen: Es gilt dafür: [mm] \overline{\epsilon_1}= \epsilon_2 [/mm] mit [mm] \epsilon_1:= [/mm] r * [mm] e^{i \Phi} [/mm]
D.h. [mm] \epsilon_1* \phi_1+ \epsilon_2* \phi_2 [/mm] = [mm] e^{- \frac{\alpha}{2}t}( |\epsilon_1| [/mm] * [mm] e^{i \Phi} [/mm] * [mm] e^{i \omega_0 t} [/mm] + [mm] |\epsilon_1| e^{- i \Phi} [/mm] * [mm] e^{- i \omega_0 t})= |\epsilon_1| e^{- \frac{\alpha}{2}} 2(cos(\phi [/mm] + [mm] \omega_0 [/mm] t))

So woher weiß ich nun, dass ich alle Lösungen für den Fall 1) gefunden habe? Das der Lösungraum ein zweidimensionaler Vektorraum ist hatten wir bis jetzt noch nicht, dafür aber den Satz von Picard Lindelöf.
Geht es damit?
Ich habe versucht, das wie in beitrag https://matheraum.de/read?t=1072338 von fred zu lösen, jedoch gilt in dem Fall ja nicht u(0)=0 und u'(0)=0. Also man müsste z anders wählen, aber wie?
Fall 2 und Fall 3 widme ich mich, nachdem die Fragen zu Fall 1 beseitigt wurden;)


        
Bezug
Oszillator, Reibung, Dgl,: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mo 28.03.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]