matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenOrtsvektoren bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Vektoren" - Ortsvektoren bestimmen
Ortsvektoren bestimmen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ortsvektoren bestimmen: Ortsvektoren berechnen
Status: (Frage) beantwortet Status 
Datum: 11:49 Mi 02.12.2009
Autor: Lenzen666

Aufgabe
Geg: A=(-2/1), B=(5/6), [mm] g_{1}=AB, g_{2}:\vec{a}= \vektor{4\\ -2}+\mu\vektor{-1\\ 7} [/mm]
ges: Schnittpunkte der Geraden (das versteh ich: gleichungen gleichsetzten usw..)
und Berechnung des Ortsvektor [mm] \vec{x}_{m} [/mm]  des Mittelpunkts M von [mm] \overline{AB} [/mm]

hier liegt mein Problem...

ich weiß nicht wie diesen Ortsvektor berechnen kann..

ich hoffe ihr könnt mir helfen...














Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ortsvektoren bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Mi 02.12.2009
Autor: artischocke

Hallo Lenzen,

> Geg: A=(-2/1), B=(5/6), [mm]g_{1}=AB, g_{2}:\vec{a}= \vektor{4\\ -2}+\mu\vektor{-1\\ 7}[/mm]
>  
> ges: Schnittpunkte der Geraden (das versteh ich:
> gleichungen gleichsetzten usw..)
>  und Berechnung des Ortsvektor [mm]\vec{x}_{m}[/mm]  des
> Mittelpunkts M von [mm]\overline{AB}[/mm]
>  hier liegt mein Problem...

Wenn du M als Mittelpunkt der Strecke [mm] $\overline{AB}$ [/mm] berechnen sollst, brauchst du erst einmal die Länge der Strecke. Dann "läufst" du von $A$ oder $B$ die halbe Länge entlang der Strecke und bist bei M angekommen.

Kannst du mir folgen?

Gruß

Bezug
                
Bezug
Ortsvektoren bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:14 Mi 02.12.2009
Autor: Lenzen666

ich habe gerade die antwort von fred gelesen...



das hat mir geholfen.. danke für deine antwort :-)

Bezug
        
Bezug
Ortsvektoren bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 Mi 02.12.2009
Autor: fred97


> Geg: A=(-2/1), B=(5/6), [mm]g_{1}=AB, g_{2}:\vec{a}= \vektor{4\\ -2}+\mu\vektor{-1\\ 7}[/mm]
>  
> ges: Schnittpunkte der Geraden (das versteh ich:
> gleichungen gleichsetzten usw..)
>  und Berechnung des Ortsvektor [mm]\vec{x}_{m}[/mm]  des
> Mittelpunkts M von [mm]\overline{AB}[/mm]
>  hier liegt mein Problem...
>
> ich weiß nicht wie diesen Ortsvektor berechnen kann..


Wenn Du 2 Vektoren $ [mm] \vec{a} [/mm] $ und $ [mm] \vec{b} [/mm] $ gegeben hast, so ist der Ortsvektor des Mittelpunktes gegeben durch

               $ [mm] \vec{x}_m= \bruch{1}{2}*\overrightarrow [/mm] {(a+b)}$

FRED


>  
> ich hoffe ihr könnt mir helfen...
>  
>
>
>
>
>
>
>
>
>
>
>
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]