matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenOrthonormalisierungsverfahren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Orthonormalisierungsverfahren
Orthonormalisierungsverfahren < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonormalisierungsverfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:50 So 16.03.2014
Autor: Gina2013

Aufgabe
Seien r, s [mm] \in \IR [/mm] und A= [mm] \pmat{ 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 9 }. [/mm] Man otrhonormalisiere die Standardbasis von [mm] \IR^{3} [/mm] bezüglich des Skalarprodukts [mm] \delta: \IR^{3} [/mm] X [mm] \IR^{3}\to \IR, [/mm] (x,y) [mm] \mapsto x^{t}Ay. [/mm]

Guten Abend alle zusammen,
habe diese Aufgabe und weiß nicht wie ich diese rechnen soll.
Habe drei Vektoren aus dem Standardbasis v genannt : [mm] v_{1}= \vektor{1 \\ 0 \\ 0} v_{2}=\vektor{0 \\ 1 \\ 0} v_{3}= \vektor{0 \\ 0 \\ 1} [/mm]
Mir ist unklar wie ich aus [mm] x^{t}Ay [/mm] x und y finde, damit ich die Standardbasis orthonormalisieren kann.
Ich weiß zwar wie Orthonormalisierungsverfahren geht, aber komme irgendwie nicht weiter.
Wäre dankbar, wenn mir geholfen wird.

        
Bezug
Orthonormalisierungsverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 06:24 So 16.03.2014
Autor: angela.h.b.


> Seien r, s [mm]\in \IR[/mm] und A= [mm]\pmat{ 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 9 }.[/mm]
> Man otrhonormalisiere die Standardbasis von [mm]\IR^{3}[/mm]
> bezüglich des Skalarprodukts [mm]\delta: \IR^{3}[/mm] X [mm]\IR^{3}\to \IR,[/mm]
> (x,y) [mm]\mapsto x^{t}Ay.[/mm]
>  Guten Abend alle zusammen,
>  habe diese Aufgabe und weiß nicht wie ich diese rechnen
> soll.
> Habe drei Vektoren aus dem Standardbasis v genannt : [mm]v_{1}= \vektor{1 \\ 0 \\ 0} v_{2}=\vektor{0 \\ 1 \\ 0} v_{3}= \vektor{0 \\ 0 \\ 1}[/mm]
>  
> Mir ist unklar wie ich aus [mm]x^{t}Ay[/mm] x und y finde, damit ich
> die Standardbasis orthonormalisieren kann.
>  Ich weiß zwar wie Orthonormalisierungsverfahren geht,

Hallo,

das ist schonmal gut.

Damit Du den Algorithmus nicht aufschreiben mußt, schlage ich vor, daß wir uns darauf einigen, mit den Bezeichnungen des []wikipedia-Artikels zu arbeiten.

Los geht's.
Damit wir nicht durcheinanderkommen, taufen wir Deine Vektoren um:
Du hast gegeben 3 linear unabhängige Vektoren
[mm] w_{1}= \vektor{1 \\ 0 \\ 0}, w_{2}=\vektor{0 \\ 1 \\ 0}, w_{3}= \vektor{0 \\ 0 \\ 1}, [/mm]
die nun bzgl des durch A gegebenen Skalarproduktes orthonormalisiert werden sollen.

Am Ende wollen wir drei Vektoren [mm] v_1, v_2, v_3 [/mm] haben, die denselben Raum aufspannen wie [mm] w_1, w_2, w_3, [/mm] und die orthonormal bzgl. des durch A gegebene Skalarproduktes sind, für die also gilt

[mm] w_i^{T}Aw_i=1 [/mm] für i=1,2,3
[mm] w_i^{T}Aw_j=0 [/mm]    für [mm] i\not=j. [/mm]

Du sagst nun leider nicht, woran die Umsetzung des Verfahrens bei Dir scheitert, deshalb muß ich raten:
das <x,y> , im Wikipedia-Artikel steht für das Skalarprodukt von x und y.
Hier ist also [mm] =x^{T}Ay. [/mm]

Damit solltest Du nun in der Lage sein, den Algorithmus durchzuführen.

LG Angela



Bezug
                
Bezug
Orthonormalisierungsverfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 So 16.03.2014
Autor: Gina2013

Danke Angela,
nur ich bekomme alle v-Vektoren gleich den w-Vektoren:
[mm] v_{1}=w_{1} [/mm]

[mm] v_{2}=w_{2}-\bruch{}{}v_{1}=\vektor{0 \\ 1 \\ 0}-0 [/mm]
[mm] v_{3}=w_{3}-\bruch{}{}v_{1} [/mm] - [mm] \bruch{}{}v_{2}=\vektor{0 \\ 0 \\ 1}-0-0 [/mm]
Ich mache bestimmt falsch, da es mit Matrix A nichts gemacht wird und da liegen meine Schwierigkeiten.

Bezug
                        
Bezug
Orthonormalisierungsverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 So 16.03.2014
Autor: MathePower

Hallo Gina2013,

> Danke Angela,
>  nur ich bekomme alle v-Vektoren gleich den w-Vektoren:
> [mm]v_{1}=w_{1}[/mm]
>  
> [mm]v_{2}=w_{2}-\bruch{}{}v_{1}=\vektor{0 \\ 1 \\ 0}-0[/mm]
>  
> [mm]v_{3}=w_{3}-\bruch{}{}v_{1}[/mm] -
> [mm]\bruch{}{}v_{2}=\vektor{0 \\ 0 \\ 1}-0-0[/mm]
>  
> Ich mache bestimmt falsch, da es mit Matrix A nichts
> gemacht wird und da liegen meine Schwierigkeiten.


Mit der Matrix  A ist das Skalarprodukt zu berechnen..

Dann ist:

[mm]=v_{1}^{T}Av_{1}[/mm]

[mm]=v_{1}^{T}Aw_{2}[/mm]

[mm]=v_{1}^{T}Aw_{3}[/mm]

[mm]=v_{2}^{T}Av_{2}[/mm]

[mm]=v_{1}^{T}Aw_{3}[/mm]


Gruss
MathePower

Bezug
                                
Bezug
Orthonormalisierungsverfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 So 16.03.2014
Autor: Gina2013

Genau da lag mein Problem,
vielen vielen Dank!!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]