matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteOrthonormale Basis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Skalarprodukte" - Orthonormale Basis
Orthonormale Basis < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonormale Basis: Aufgaben
Status: (Frage) beantwortet Status 
Datum: 14:59 Mo 05.05.2014
Autor: dodo1924

Aufgabe
Gib eine orthonormale Basis des Unterraums W des [mm] C^3 [/mm] an, der durch [mm] \vec{v_1} [/mm] := (1,i,0) und [mm] \vec{v_2} [/mm] :=  (1,2,1-i) aufgespannt wird. (Gram-Schmidt)



Hi!

Mit dem Gram-Schmidt  Verfahren bekomme ich ja zuerst eine orthgonale Basis und wenn ich dann die Basisvektoren normalisiere habe ich eine Orthonormalbasis!

Gram-Schmidt:
sei [mm] B:={\vec{x_1}, \vec{x_2}} [/mm]
[mm] \vec{x_1} [/mm] = [mm] \vec{v_1} [/mm]
[mm] \vec{x_2} [/mm] = [mm] \vec{v_2} [/mm] - [mm] (<\vec{v_1},\vec{x_1}>/||\vec{x_1}||^2)*\vec{x_1} [/mm]
da jedoch [mm] ||\vec{x_1}||^2 [/mm] = [mm] <\vec{x_1},\vec{x_1}> [/mm] = [mm] 1+i^2 [/mm] = 1-1 = 0 gilt ja [mm] vec{x_2} [/mm] = [mm] \vec{v_2} [/mm] - 0 = [mm] \vec{v_2}! [/mm]
Also bilden die Vektoren aus der Angabe ja bereits eine orthogonale Basis, richtig?

        
Bezug
Orthonormale Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:10 Mo 05.05.2014
Autor: leduart

Hallo
[mm] |v_1|=|1|^2+|i|^2=1+1=2 [/mm]
nur der Nullvektor hat den Betrag 0. in [mm] \IC [/mm] ist das Skalarprodukt  [mm] =a*\overline{a} [/mm]
ausserdem macht die aussage etwas ist orthogonal zu, Nullvektor nicht viel Sinn. (und durch 0 dividieren gibt i.A. nicht 0
Gruss leduart

Bezug
                
Bezug
Orthonormale Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:29 Mo 05.05.2014
Autor: dodo1924

Dann komme ich auf folgendes [mm] x_2: [/mm]

(1+2i)/2 = 1/2 + i

[mm] x_2 [/mm] = [mm] \vektor{1 \\ 2 \\ 1-i} -(1/2+i)*\vektor{1 \\ i \\ 0} [/mm] = [mm] \vektor{1 \\ 2 \\ 1-i} -\vektor{ 0.5+i\\ 0.5+i^2 (=-0,5) \\ 0} [/mm] = [mm] \vektor{0.5-i \\ 2.5 \\ 1-i} [/mm]

Bezug
                        
Bezug
Orthonormale Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Mo 05.05.2014
Autor: leduart

Hallo
1- kannst du dein Ergebnis selbst überprüfen und fesstellen dass den x1,x2 nicht orthogonal!
2.    (0.5+i)*i=0.5*i-1
wie habt ihr das Skalarprodukt [mm] in\IC [/mm] definiert? als Sesquilinearform  (siehe wiki) oder als den Realteil davon?
beides hast du nicht verwendet.
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]