matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenOrthonormalbasis, Darstellung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Orthonormalbasis, Darstellung
Orthonormalbasis, Darstellung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonormalbasis, Darstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 Mo 23.04.2012
Autor: quasimo

Aufgabe
Man bestimme eine Orthonormalbasis des [mm] \IR^2 [/mm] so, dass ein Basisvektor
dieselbe Richtung wie (1; 2) hat. Man bestimme die Darstellung des Vektors (1; 1) in dieser Basis.


Hallo

Ich normiere (1;2)
[mm] (1/\wurzel{5};2/\wurzel{5}) [/mm]
Dann drehe ich diesen um 90 Grad und erhalte [mm] (2/\wurzel{5};-1/\wurzel{5}) [/mm]

[mm] (1/\wurzel{5};2/\wurzel{5}) und(2/\wurzel{5};-1/\wurzel{5}) [/mm]
sind nun die Orthonormalbasis des [mm] \IR^2 [/mm]

Wie macht man das nun mit der Darstellung von (1;1) ?
[mm] (1/\wurzel{5};2/\wurzel{5}) +(2/\wurzel{5};-1/\wurzel{5}) [/mm] =
[mm] (3/\wurzel{5};1/\wurzel{5}) [/mm]

STimmt das?
Wie macht man das sonst in der Regel?


Ist ins falsche Forum gerutscht, sry ;)

        
Bezug
Orthonormalbasis, Darstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 Mo 23.04.2012
Autor: leduart

Hallo nimm deine 2 Basisvektoren, [mm] b_1 [/mm] und [mm] b_2 [/mm] dann muss [mm] r*b_1+s*b_2=(1,1) [/mm] sein. r,s bestimmen.
mit r=s=1 wie du es gemacht hast ist es ja offensichtlich falsch.
Gruss leduart


Bezug
                
Bezug
Orthonormalbasis, Darstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:47 Mo 23.04.2012
Autor: quasimo

Okay.
Aber wiso stimmt meine ARt nicht? Ich hab doch die zwei Vektoren Normiert und sie bilden eine Basis.

Im [mm] \IR^2 [/mm] sind [mm] e_1 [/mm] und [mm] e_2 [/mm] auch normal aufeinander und bilden eine Basis, wenn ich die addiere kommt (1;1) raus.
Also dachte ich, ich kann hier auch die Orthonormalbasis addieren und erhalte die Darstellung von (1;1)

Bezug
                        
Bezug
Orthonormalbasis, Darstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Mo 23.04.2012
Autor: leduart

Hallo
du hast doch jetzt ne andere Basis, dann kann (1,1) doch nicht dieselbe Darstellung haben. in der neuen basis gibt es einen vektor [mm] 1*b1+1*b2=(1,1)_b [/mm]
du sollst den [mm] Vektor(1,1)_e [/mm]  wobei e die übliche Basis ist in der neuen Basis darstellen.
was du gemacht hast ist [mm] (1,1)_b [/mm]  in der alten Basis darzustellen.
Wenn [mm] (1,1)_b [/mm] gemeint wäre, dann ist es ja schon dargestellt!
gesucht ist also [mm] /1,1)_e=(r,s)_b [/mm]
gruss leduart

Bezug
                                
Bezug
Orthonormalbasis, Darstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:07 Mo 23.04.2012
Autor: quasimo

mercii ;)
LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]