matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeOrthonormalbasen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Orthonormalbasen
Orthonormalbasen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonormalbasen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 So 27.09.2009
Autor: NightmareVirus

Aufgabe
Sei [mm] $\mathcal{V}$ [/mm] ein [mm] $\mathbb{R}$-Vektorraum [/mm] mit Basis $B = [mm] (B_1, \ldots, B_4)$. [/mm] Weiter sei [mm] $\Phi$ [/mm] due symmetrische Bilinearform auf [mm] $\mathcal{V}$ [/mm] mit.
[mm] $${}_{B}\Phi^B [/mm] = [mm] \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$ [/mm]

Ferner sei [mm] $\mathcal{U} [/mm] := [mm] \left \langle B_1, B_2 \right \rangle \leq \mathcal{V}$. [/mm]

(b) Geben Sie Orthonormalbasen von [mm] $\mathcal{U}$ [/mm] und [mm] $\mathcal{U}^{perp}$ [/mm] an.

Hi,
Ich habe das ganze mit Gram-Schmidt gemacht bin mir aber nicht sicher ob das so ok ist:

Zunächst ist [mm] $B_1, B_2$ [/mm] die ersten beiden Spalten der Matrix [mm] ${}_B \Phi^B$ [/mm]

Zu diesen beiden Vektoren bilde ich nun die ON-Basis:

[mm] $X_1 [/mm] = [mm] \frac{1}{\sqrt{3}} \vektor{1\\1\\1\\0}$ [/mm]
[mm] $X_2_{temp} [/mm] = [mm] \vektor{1\\2\\1\\0} [/mm] + [mm] \left \langle \vektor{1\\2\\1\\0}, \vektor{1\\1\\1\\0} \right \rangle \frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}}\vektor{1\\1\\1\\0} [/mm] = [mm] \frac{1}{3}\vektor{7\\10\\7\\0} [/mm]
Also:
[mm] $X_2 [/mm] = [mm] \frac{1}{\sqrt{49+100+49}}\vektor{7\\10\\7\\0}$ [/mm]

Damit bildet

[mm] $$(X_1,X_2 [/mm] )$$

eine ON-Basis von [mm] $\mathcal{U}$ [/mm]

korrekt?

Nun zu [mm] $\mathcal{U}^{\perp}. [/mm]

Hier würde ich dann [mm] $B_3,B_4$ [/mm] (wegen [mm] B_3 \notin \mathcal{U} [/mm] und [mm] $B_4 \notin \mathcal{U}) [/mm] ebenfall orthonormalisieren. Also quasi das Gram-Schmidt-Verfahren weiterlaufen lassen mit den Vektoren [mm] $B_3, B_4$. [/mm] Die so erhaltenen Vektoren [mm] $X_3,X_4$ [/mm] sind dann die ON-Basis zu [mm] $\mathcal{U}^{\perp}$ [/mm]

korrekt?

        
Bezug
Orthonormalbasen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 So 27.09.2009
Autor: angela.h.b.


> Sei [mm]\mathcal{V}[/mm] ein [mm]\mathbb{R}[/mm]-Vektorraum mit Basis [mm]B = (B_1, \ldots, B_4)[/mm].
> Weiter sei [mm]\Phi[/mm] due symmetrische Bilinearform auf
> [mm]\mathcal{V}[/mm] mit.
>  [mm]{}_{B}\Phi^B = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}[/mm]
>  
> Ferner sei [mm]\mathcal{U} := \left \langle B_1, B_2 \right \rangle \leq \mathcal{V}[/mm].
>  
> (b) Geben Sie Orthonormalbasen von [mm]\mathcal{U}[/mm] und
> [mm]\mathcal{U}^{perp}[/mm] an.
>  Hi,
>  Ich habe das ganze mit Gram-Schmidt gemacht bin mir aber
> nicht sicher ob das so ok ist:
>  
> Zunächst ist [mm]B_1, B_2[/mm] die ersten beiden Spalten der Matrix
> [mm]{}_B \Phi^B[/mm]

Hallo,

nein, das stimmt nicht.

Die matrix ist doch die Darstellungsmatrix der Bilinearform [mm] \phi [/mm] bzgl. der Basis B.

Es ist B= [mm] (b_i_k) [/mm] mit  [mm] b_i_k=\phi(B_i,b_k). [/mm]

>  
> Zu diesen beiden Vektoren bilde ich nun die ON-Basis:

Du mußt [mm] B_1 [/mm] und [mm] B_2 [/mm] orthonormalisieren - und zwar bzgl der oben gegebenen Bilinearform.

Erstmal [mm] B_1 [/mm] normieren:

[mm] C_1=\bruch{B_1}{\parallel B_1\parallel}=\bruch{B_1}{\wurzel{}= \bruch{B_1}{\wurzel{1}} =B_1 (: [/mm] Element der Matrix links oben)

Und nun weiter. [mm] [/mm] erfährst Du stets aus der Matrix.

Gruß v. Angela





Bezug
                
Bezug
Orthonormalbasen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:53 So 27.09.2009
Autor: NightmareVirus

ah, ok d.h. ich kenne gar keine Werte von den Vektoren [mm] B_1, B_2 [/mm] sondern weiss nur wegen der Gram-Matrix [mm] ${}_B \Phi [/mm] ^B$ wie das Skalarprodukt zwischen den beiden aussieht.> > Sei [mm]\mathcal{V}[/mm] ein

> Und nun weiter. [mm][/mm] erfährst Du stets aus der
> Matrix.

Ok, dann bestimme ich jetzt mit der 2. Iteration der Gram-Schmidtverfahren [mm] $C_2$: [/mm]

[mm] $C_{2_{temp}} [/mm] = [mm] B_2 [/mm] + [mm] X_1 [/mm] = [mm] B_2 [/mm] + [mm] B_1 [/mm] = [mm] B_2 [/mm] + 1 * [mm] B_1 [/mm] = [mm] B_2 [/mm] + [mm] B_1 [/mm]

Nun [mm] $B_2 [/mm] + [mm] B_1$ [/mm] orthogonal zu [mm] $C_1$. [/mm] Jedoch noch nicht normiert.
Dazu :

[mm] $C_2 [/mm] = [mm] \frac{B_2+B_1}{||B_2+B_1||}$ [/mm] Aber was ist denn jetzt die Länge von [mm] $B_2 [/mm] + [mm] B_1$? [/mm] Ich müsste ja quasi [mm] $ [/mm] ablesen können. Kann ich aber nicht.


Bezug
                        
Bezug
Orthonormalbasen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 So 27.09.2009
Autor: angela.h.b.


> ah, ok d.h. ich kenne gar keine Werte von den Vektoren [mm]B_1, B_2[/mm]
> sondern weiss nur wegen der Gram-Matrix [mm]{}_B \Phi ^B[/mm] wie
> das Skalarprodukt zwischen den beiden aussieht.> > Sei
> [mm]\mathcal{V}[/mm] ein
>
> > Und nun weiter. [mm][/mm] erfährst Du stets aus der
> > Matrix.
>  
> Ok, dann bestimme ich jetzt mit der 2. Iteration der
> Gram-Schmidtverfahren [mm]C_2[/mm]:
>  
> [mm]$C_{2_{temp}}[/mm] = [mm]B_2[/mm] + [mm] X_1[/mm] = [mm]B_2[/mm] + [mm] B_1[/mm]
> = [mm]B_2[/mm] + 1 * [mm]B_1[/mm] = [mm]B_2[/mm] + [mm]B_1[/mm]
>  
> Nun [mm]B_2 + B_1[/mm] orthogonal zu [mm]C_1[/mm]. Jedoch noch nicht
> normiert.
>   Dazu :
>  
> [mm]$C_2[/mm] = [mm]\frac{B_2+B_1}{||B_2+B_1||}$[/mm] Aber was ist denn jetzt
> die Länge von [mm]$B_2[/mm] + [mm]B_1$?[/mm] Ich müsste ja quasi [mm]$[/mm]
> ablesen können. Kann ich aber nicht.

Hallo,

direkt ablesen kannst Du's nicht.

Aber Du kennst doch Eigenschaften von [mm] \phi, [/mm] insbesondere die Bilinearität.

Gruß v. Angela


Bezug
                                
Bezug
Orthonormalbasen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:51 So 27.09.2009
Autor: NightmareVirus

D.h. [mm] $$ [/mm] forme ich um zu:
[mm] $$ [/mm] = [mm] [/mm] + [mm] [/mm] = [mm] + [/mm] + [mm] [/mm] + [mm] $$ [/mm] Das kann ich dann wieder in der Matrix ablesen und es ist
[mm] $$ [/mm] = 1+1+1+2 = 5$

Und somit [mm] $C_2 [/mm] = [mm] \frac{B_1+B_2}{5}$ [/mm]

ok?

Bezug
                                        
Bezug
Orthonormalbasen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 So 27.09.2009
Autor: angela.h.b.

Hallo,

[mm] 5=\parallel B_1+>B_2\parallel^2. [/mm]

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]