matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesOrthonormalb.,quadrat ergänzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Orthonormalb.,quadrat ergänzen
Orthonormalb.,quadrat ergänzen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonormalb.,quadrat ergänzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 Mi 06.01.2016
Autor: sissile

Aufgabe
Hallo,
In einem Beweis verstehe ich eine Zeile nicht. Im Buch steht, dass es sich um quadratische Ergänzung handelt. Jedoch komme ich nicht dahinter, wie ich das genau umwandle.

Es geht um den Satz:
Sei X ein Vektorraum. Sei [mm] \{\phi\}_{i=1}^n [/mm] eine Orthonormalbasis vom endlichdimensionalen Unterraum [mm] X_n \subset [/mm] X.
Für f [mm] \not\in X_n [/mm] ist [mm] f_n [/mm] = [mm] \sum_{i=1}^n [/mm] < [mm] \phi_i, [/mm] f> [mm] \phi_i [/mm] die Bestapproximation an f aus [mm] X_n: [/mm]
[mm] ||f-f_n|| [/mm] < ||f-g||

Der nicht verständliche Schritte:
Wir haben gezeigt ||f [mm] -\sum_{i=1}^n \tilde{\alpha_i} \phi_i||^2 [/mm] = [mm] ||f||^2 [/mm] - 2 [mm] \sum_{j=1}^n Re(\tilde{\alpha_j} \overline{\alpha_j}) [/mm] + [mm] \sum_{i=1}^n |\tilde{\alpha_i}|^2 [/mm] wobei [mm] \alpha_j= <\phi_j,f> [/mm] ist.
Wie folgt daraus:
||f [mm] -\sum_{i=1}^n \tilde{\alpha_i} \phi_i||^2 [/mm] = [mm] ||f||^2 [/mm] - [mm] \sum_{i=1}^n|\alpha_i|^2 [/mm] + [mm] \sum_{i=1}^n |\tilde{\alpha_i}- \alpha_i|^2. [/mm]



Liebe Grüße,
sissi

        
Bezug
Orthonormalb.,quadrat ergänzen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Mi 06.01.2016
Autor: Gonozal_IX

Hiho,

wir zäunen das mal von hinten auf.....

[mm] $-|a_i|^2 [/mm] + [mm] |\tilde{a_i} [/mm] - [mm] a_i|^2$ [/mm]
$= [mm] -Re^2(a_i) [/mm] - [mm] Im^2(a_i) [/mm] + [mm] Re^2(\tilde{a_i} [/mm] - [mm] a_i) [/mm] + [mm] Im^2(\tilde{a_i} [/mm] - [mm] a_i)$ [/mm]
$=  [mm] -Re^2(a_i) [/mm] - [mm] Im^2(a_i) [/mm] + [mm] Re^2(\tilde{a_i}) [/mm] - [mm] 2Re(\tilde{a_i})Re(a_i) [/mm] + [mm] Re^2(a_i) [/mm] + [mm] Im^2(\tilde{a_i}) [/mm] - [mm] 2Im(\tilde{a_i})Im(a_i) [/mm] + [mm] Im^2(a_i)$ [/mm]
$= [mm] Re^2(\tilde{a_i}) [/mm] + [mm] Im^2(\tilde{a_i}) [/mm] - [mm] 2Re(\tilde{a_i})Re(a_i) [/mm] - [mm] 2Im(\tilde{a_i})Im(a_i) [/mm] $
$= [mm] |\tilde{a_i}|^2 [/mm] - [mm] 2Re(\tilde{a_i})Re(a_i) [/mm] - [mm] 2Im(\tilde{a_i})Im(a_i) [/mm] $

Verwenden wir nun: [mm] $Re(a_i) [/mm] = [mm] Re(\overline{a_i})$ [/mm] sowie [mm] $Im(a_i) [/mm] = [mm] -Im(\overline{a_i})$, [/mm] erhalten wir erstmal:

[mm] $=|\tilde{a_i}|^2 [/mm] - [mm] 2(Re(\tilde{a_i})Re(\overline{a_i}) [/mm] - [mm] Im(\tilde{a_i})Im(\overline{a_i}))$ [/mm]

und daraus mit [mm] $Re(\tilde{a_i}\overline{a_i}) [/mm] = [mm] Re(\tilde{a_i})Re(\overline{a_i}) [/mm] - [mm] Im(\tilde{a_i})Im(\overline{a_i})$ [/mm]

[mm] $=|\tilde{a_i}|^2 [/mm]  - [mm] 2Re(\tilde{a_i}\overline{a_i}) [/mm] $

Gruß,
Gono

Bezug
                
Bezug
Orthonormalb.,quadrat ergänzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Mi 06.01.2016
Autor: sissile

Hallo,
Danke für die Auschlüsselung und die Mühe!
Ich war aber eher daran interessiert wie man zu dem Schritt mitels quadratischer Ergänzung kommt. Falls wer in diese Richtung noch Ideen hat wäre ich dankbar!


Vielen Dank,
Sissi

Bezug
                        
Bezug
Orthonormalb.,quadrat ergänzen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Mi 06.01.2016
Autor: Gonozal_IX

Hiho,

wenn du das von unten nach oben liest (was im Beweis ja gemacht wird) ist das doch die quadratische Ergänzung!
Was meinst du, was beim dritten Gleichheitszeichen von oben passiert, wenn man es von unten liest und wo die quadratischen Terme herkommen?

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]