matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteOrthonomierungsverfahren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Skalarprodukte" - Orthonomierungsverfahren
Orthonomierungsverfahren < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonomierungsverfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:21 Sa 20.05.2006
Autor: Esperanza

Aufgabe
Anwenden des Orthonomierungsverfahrens:

[mm] v_1=\vektor{1 \\ -1 \\ 1} [/mm]
[mm] v_2=\vektor{1 \\ 0 \\ 1} [/mm]
[mm] v_3=\vektor{1 \\ 0 \\ 0} [/mm]

Ich versuche gerade mir dieses Verfahren zu verinnerlichen. Eine Internetseite (kein Forum) zeigt das Verfahren so:

Zuerst mache ich dies:

[mm] u_1=v_1/||v_1|| [/mm]

und erhalte:

[mm] \bruch{1}{\wurzel{3}}\vektor{1 \\ -1 \\ 1} [/mm]

weiter soll es vorerst gehen mit:

[mm] u_2=v_1-u_1=\vektor{1 \\ 0 \\ 1}-\bruch{2}{\wurzel{3}}*\bruch{1}{\wurzel{3}}\vektor{1 \\ -1 \\ 1}=\bruch{1}{3}\vektor{1 \\ 2 \\ 1} [/mm]

Leider verstehe ich die Schreibweise nicht. Was heißt [mm] [/mm] ? Soll ich das addieren? Ich komme nicht auf [mm] \bruch{2}{\wurzel{3}} [/mm]

Kann mir da jemand weiterhelfen? Möchte das gerne verstehen.

Esperanza

        
Bezug
Orthonomierungsverfahren: Skalarprodukt
Status: (Antwort) fertig Status 
Datum: 12:27 Sa 20.05.2006
Autor: Loddar

Hallo Esperanza!


Unter [mm]\left<\vec{v}_2,\vec{u}_1\right>[/mm] versteht man das MBSkalarprodukt der beiden Vektoren [mm] $\vec{v}_2$ [/mm] und [mm] $\vec{u}_1$ [/mm] :

[mm]\left<\vec{a},\vec{b}\right> \ = \ \vektor{a_1\\a_2\\a_3}*\vektor{b_1\\b_2\\b_3} \ = \ a_1*b_1+a_2*b_2+a_3*b_3[/mm]


Gruß
Loddar


Bezug
                
Bezug
Orthonomierungsverfahren: Achso
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:00 Sa 20.05.2006
Autor: Esperanza

Alles klar, danke, das leuchtet mir ein!

Danke + Bussi an Loddar ;@)

Bezug
                        
Bezug
Orthonomierungsverfahren: Uih ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:06 Sa 20.05.2006
Autor: Loddar

.

> Danke + Bussi an Loddar ;@)

[verlegen] ... Danke!


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]