matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisOrthogonaltrajektorien
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Orthogonaltrajektorien
Orthogonaltrajektorien < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonaltrajektorien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:05 Mi 16.08.2006
Autor: stevarino

Aufgabe
Für die folgende Kurvenschar stelle man die Differentialgleichung der Orthogonaltrajektorien auf und bestimme die allgemeine Lösung
[mm] a.)y^{2}=x+c [/mm]
[mm] b.)x^{2}+2y^{2}=c [/mm]

Hallo

Ich hab bei diesem Beispiel überhaupt keine Ahnung was da überhaupt gemeint ist. In meinem Skriptum hab ich nur folgendes zur Lösung gefunden

(1)K(x,y,c)=0

[mm] (2)K_{x}(x,y(x),c)+K_{y}(x,y(x),c)*y [/mm] ´=0

jetzt soll man falls möglich aus 1 c=c(x,y) ausdrücken und in 2 einsetzen

dann erhält man f(x,y)+g(x,y)*y ´ =0
Die orthogonalen Trajektorien genügen offenbar der Differentialgleichung
y ´ [mm] =\bruch{g(x,y)}{f(x,y)} [/mm]
so hab ich das dann probiert...

[mm] K(x,y(x),c)=y^{2}-x-c=0 [/mm]
[mm] K_{x}(x,y(x),c)=-1 [/mm]
[mm] K_{y}(x,y(x),c)=2y [/mm]
y ´ [mm] =\bruch{1}{2*\wurzel{x+c}} [/mm]
[mm] K_{x}(x,y(x),c)+K_{y}(x,y(x),c)*y [/mm] ´ =0
-1+2y*y ´=0
[mm] -1+2y*\bruch{1}{2*\wurzel{x+c}}=0 [/mm] mit [mm] c=y-x^{2} [/mm]
[mm] -1+2y*\bruch{1}{2*\wurzel{x+y-x^{2}}}=0 [/mm] spätesten jetzt hab ich keine Ahnung mehr wie es weitergeht und ob das bis jetzt schon mal stimmt. Wie funktioniert das falls es falsch ist richtig und was kann man sich unter Orthogonalentrajektorien vorstellen ???

lg Stevo

        
Bezug
Orthogonaltrajektorien: Antwort
Status: (Antwort) fertig Status 
Datum: 14:21 Mi 16.08.2006
Autor: MatthiasKr

Hallo stevo,

> Für die folgende Kurvenschar stelle man die
> Differentialgleichung der Orthogonaltrajektorien auf und
> bestimme die allgemeine Lösung
>  [mm]a.)y^{2}=x+c[/mm]
>  [mm]b.)x^{2}+2y^{2}=c[/mm]

>>  

> (1)K(x,y,c)=0
>  
> [mm](2)K_{x}(x,y(x),c)+K_{y}(x,y(x),c)*y[/mm] ´=0
>  
> jetzt soll man falls möglich aus 1 c=c(x,y) ausdrücken und
> in 2 einsetzen
>  

ich kann leider deinen ansatz nicht so ganz nachvollziehen bzw. finde ihn nicht sehr anschaulich.

Orthogonaltrajektorien müssten Kurven sein, die alle Kurven deiner Schar  im rechten Winkel schneiden. Insofern würde ich so vorgehen:

Wenn die Kurvenschar implizit durch $K(x,y,c)=0$ gegeben ist, erhältst du das Normalenfeld durch Bildung des Gradienten bzgl. x und y,also

[mm] $N(x,y)=\nabla_{x,y} [/mm] K(x,y,c)$


Die Orthogonaltrajektorien sind nun genau der Fluß des Vektorfeldes N, also die Lösungen der DGL

$r'(t)=N(r(t))$ mit [mm] $r(t)=\vektor{x(t) \\ y(t)}$ [/mm]

oder anders

[mm] $\vektor{ x' \\y'} =\vektor{\partial_x K (x,y) \\ \partial_y K(x,y)}$ [/mm]

zB. Aufgabe a): [mm] $K(x,y,c)=y^2-x-c$ [/mm] führt auf die DGL

[mm] $\vektor{ x' \\y'} =\vektor{ -1 \\ 2y}$ [/mm]

Das kann man leicht [mm] lösen:$x(t)=-t+k_1$ [/mm] und [mm] $y(t)=k_2 e^{2t}$. [/mm] Das heißt

[mm] $r(t)=\vektor{ -t +k_1 \\ k_2 e^{2t}}$ [/mm]

Parametrisiert man das ganze um mit [mm] $s:=-t+k_1$ [/mm] ergibt sich

[mm] $r(s)=\vektor{ s \\ k_2 e^{-2(s-k_1)}}$ [/mm]

Alles in allem, bildet also die Schar der Funktionen [mm] $y(x,k_1,k_2)=k_2 e^{-2(x-k_1)}$ [/mm] die Orthogonaltrajektorien.

Aufgabe b) sollte so ähnlich gehen.

Gruß
Matthias

Bezug
                
Bezug
Orthogonaltrajektorien: Frage dazu
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:51 Mi 16.08.2006
Autor: statler

Hallo Matthias!

> Alles in allem, bildet also die Schar der Funktionen
> [mm]y(x,k_1,k_2)=k_2 e^{-2(x-k_1)}[/mm] die Orthogonaltrajektorien.

Ich als DGL-Laie würde hier die beiden Parameter [mm] k_{1} [/mm] und [mm] k_{2} [/mm] zu einem zusammenfassen, oder macht man das nicht?

Gruß
Dieter


Bezug
                        
Bezug
Orthogonaltrajektorien: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:09 Mi 16.08.2006
Autor: MatthiasKr

Hi Dieter!

> Hallo Matthias!
>  
> > Alles in allem, bildet also die Schar der Funktionen
> > [mm]y(x,k_1,k_2)=k_2 e^{-2(x-k_1)}[/mm] die Orthogonaltrajektorien.
>  
> Ich als DGL-Laie würde hier die beiden Parameter [mm]k_{1}[/mm] und
> [mm]k_{2}[/mm] zu einem zusammenfassen, oder macht man das nicht?

>

Stimmt, das geht auch. Wegen

[mm] $y(x,k_1,k_2)=k_2\cdot e^{-2x}\cdot e^{2k_1}=\tilde k\cdot e^{-2x}=y(x,\tilde [/mm] k)$.

Intuitiv war [mm] $k_1$ [/mm] für mich der Translations-Parameter, deswegen dachte ich, das macht sinn.

Danke, Herr DGL-Laie! ;-) (Ich dachte, Du hast in deinem Job massig mit DGLs zu tun?!)

Viele Grüße
Matthias

Bezug
                
Bezug
Orthogonaltrajektorien: Anmerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:35 Do 17.08.2006
Autor: MatthiasKr

Hallo,

>  
> [mm]\vektor{ x' \\y'} =\vektor{\partial_x K (x,y) \\ \partial_y K(x,y)}[/mm]
>  

von dieser DGL für eine Kurve kann man übrigens auch direkt zu der DGL für eine Funktion $y(x)$ kommen, die in deinem Skript auftaucht

[mm] $\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{\partial_y K}{\partial_x K}$ [/mm]

So kommt man noch etwas schneller auf die Lösungen.

Gruß
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]