matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperOrthogonalmatrizen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Orthogonalmatrizen
Orthogonalmatrizen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonalmatrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 Sa 08.02.2014
Autor: andreas01

Aufgabe
<br>


<br>
Liebe KollegInnen,

Orthogonalmatrizen = O - Matrizen

es gibt ja 2 Arten von O-Matrizen: solche mit det = 1
und solche mit det = -1.
Die mit det = 1 sind identisch mit SL(n,k).
/spezielle lineare Gruppe/

Sind folgende Aussagen richtig?

1) SL(n,k) ist Normalteiler in der Menge der O-Matrizen.
2) ASL(n,k) wäre eine Linksnebenklasse(die einzige) zu
   SL(n,k) mit bel.Element A aus der Menge der Matrizen  
   mit det = -1. Somit könnte jede Matrix B aus ASL(n,k)
   dargestellt werden als: B = A*S, S Element aus
   SL(n,k). * bedeute Matrizenmultiplikation und A sei
   ein bel. Repräsentant der Linksnebenklasse

Danke und liebe Grüße,
Andreas












        
Bezug
Orthogonalmatrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:51 So 09.02.2014
Autor: UniversellesObjekt

Hallo andreas,

1) Ja, denn SL(n,k) ist der Kern der Determinante. Aber schreibe bitte Normalteiler der Gruppe der orthogonalen Matrizen, nicht der Menge.
2) Ja, denn das Bild der Orthogonalen Matrizen unter der Determinante ist eine Gruppe der Ordnung zwei. Somit ist der Index von SL(n,k) in O genau 2, es gibt also genau zwei Nebenklassen. Alle weiteren Aussagen folgen daraus, dass die einer Gruppe zugrunde liegende Menge die disjunkte Vereinigung aller Nebenklassen einer festen Untergruppe ist (Satz von Lagrange).

Liebe Grüße,
UniversellesObjekt

Bezug
                
Bezug
Orthogonalmatrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 So 09.02.2014
Autor: andreas01

Danke für Deine Antwort!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]