Orthogonalität zwischen Ebenen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Die Ebene F durch den Punkt P(3|-1|4) ist orthogonal zu den Ebenen [mm] $E_{1}$ [/mm] und [mm] $E_{2}$. [/mm] Bestimmen Sie eine Gleichung von F.
[mm] $E_{1}:\vec [/mm] x = [mm] \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix}+r*\begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix}+s*\begin{pmatrix} 7 \\ 1 \\ 0 \end{pmatrix}$
[/mm]
[mm] $E_{2}:\vec [/mm] x = [mm] \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} +u*\begin{pmatrix} 7 \\ 1 \\ 0 \end{pmatrix} +v*\begin{pmatrix} 1 \\ 1 \\ 7 \end{pmatrix} [/mm] $
|
Guten Abend,
die Aufgabe an sich bereitet mir keine großen Schwierigkeiten, ich habe das alles brav durchgerechnet und wurde nur am Ende auf etwas aufmerksam:
Die drei Ebenen gehen alle durch P(3|-1|4) und sowohl [mm] $E_1$ [/mm] als auch [mm] $E_2$ [/mm] besitzen den Richtungsvektor [mm] $\vec [/mm] r = [mm] \begin{pmatrix} 7 \\ 1 \\ 0 \end{pmatrix} [/mm] $.
Nun habe ich herausgefunden, dass auch der Normalenvektor der gesuchten Ebene F [mm] $\vec [/mm] n = [mm] \begin{pmatrix} 7 \\ 1 \\ 0 \end{pmatrix} [/mm] $ ist.
Jetzt frage ich mich natürlich, ob ich bereits aus den auffälligen gegebenen Daten eine intelligentere Lösung hätte finden können als das relativ zeitintensive Nachrechnen, oder ob der Zusammenhang zwischen Richtungs- und Normalenvektor bloßer Zufall ist.
Danke im Vorraus für Antworten,
Melvissimo
|
|
|
|
Hallo Melvissimo,
nein, das ist kein Zufall. So wäre wohl auch der kürzeste Weg folgender gewesen.
Wenn F senkrecht zu [mm] E_1, E_2 [/mm] steht, dann steht auch der Normalenvektor von F senkrecht zu denen von [mm] E_1, E_2. [/mm]
Also: per Kreuzprodukt [mm] \vec{n}_{E_1}, \vec{n}_{E_2} [/mm] bestimmen, daraus wieder per Kreuzprodukt [mm] \vec{n}_F.
[/mm]
Dann steht auch schon die gesuchte Ebenengleichung fest: [mm] \vec{x}*\vec{n}_F=\vektor{3\\-1\\4}*\vec{n}_F
[/mm]
Dass der Aufpunkt der gesuchten Ebene zugleich der Schnittpunkt aller drei Ebenen ist, gibt die Aufgabe vor. Es ist auch leicht zu sehen, da gerade dieser Punkt auch als Aufpunkt der beiden anderen Ebenen gegeben ist (das hätte man ja auch besser "verstecken" können, wenn man gewollt hätte).
Grüße
reverend
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:44 Mo 06.09.2010 | Autor: | Melvissimo |
> Hallo Melvissimo,
>
> nein, das ist kein Zufall. So wäre wohl auch der kürzeste
> Weg folgender gewesen.
>
> Wenn F senkrecht zu [mm]E_1, E_2[/mm] steht, dann steht auch der
> Normalenvektor von F senkrecht zu denen von [mm]E_1, E_2.[/mm]
>
> Also: per Kreuzprodukt [mm]\vec{n}_{E_1}, \vec{n}_{E_2}[/mm]
> bestimmen, daraus wieder per Kreuzprodukt [mm]\vec{n}_F.[/mm]
>
> Dann steht auch schon die gesuchte Ebenengleichung fest:
> [mm]\vec{x}*\vec{n}_F=\vektor{3\\-1\\4}*\vec{n}_F[/mm]
Achso, das Kreuzprodukt haben wir noch nicht durchgenommen...
> Dass der Aufpunkt der gesuchten Ebene zugleich der
> Schnittpunkt aller drei Ebenen ist, gibt die Aufgabe vor.
> Es ist auch leicht zu sehen, da gerade dieser Punkt auch
> als Aufpunkt der beiden anderen Ebenen gegeben ist (das
> hätte man ja auch besser "verstecken" können, wenn man
> gewollt hätte).
> Grüße
> reverend
>
Danke für deine Hinweise
Gruß,
Melvissimo
|
|
|
|