matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenOrthogonalität einer Tangente
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Steckbriefaufgaben" - Orthogonalität einer Tangente
Orthogonalität einer Tangente < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonalität einer Tangente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:07 Mo 18.02.2008
Autor: Caprice

Aufgabe
Eine ganzrationale Funktion vierten Grades, deren Graph achsensymmetrisch zur y-Achse ist, hat bei x=2 eine Nullstelle. Der Graph von f hat im Punkt P(1/-6) eine Tangente, die senkrecht zur Geraden y= 0,5x + 2 steht.

b und d müssen 0 sein. Das ist klar.
Ebenso klar ist, dass f(2) = 0 ist und f(1) = - 6  ist.
Aber was geht aus der Orthogonalität der Tangente zur Geraden hervor??


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Orthogonalität einer Tangente: Steigung der Tangente
Status: (Antwort) fertig Status 
Datum: 10:15 Mo 18.02.2008
Autor: Roadrunner

Hallo Caprice,

[willkommenmr] !!


Aus der Angabe mit der Orthogonalität kannst Du die Steigung der Tangente in gegebenen Punkt ermitteln über die Beziehung:

[mm] $$m_n*m_t [/mm] \ =  \ -1$$
[mm] $$\gdw [/mm] \ \ [mm] m_t [/mm] \ = \ [mm] -\bruch{1}{m_n} [/mm] \ = \ [mm] -\bruch{1}{0.5} [/mm] \ = \ -2 \ = \ f'(1)$$

Gruß vom
Roadrunner


Bezug
                
Bezug
Orthogonalität einer Tangente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:28 Mo 18.02.2008
Autor: Caprice

Danke!

Da lag ich wohl doch nicht so falsch. Ich habe die Aufgabe mit dieser Angabe mehrmals durchgerechnet, aber kam nie auf die richtige Funktion.
Dann muss mein Fehler woanders liegen.
Oder habe ich noch eine Information übersehen, mit der sich eine weitere Gleichung aufstellen ließe?

Bezug
                        
Bezug
Orthogonalität einer Tangente: 3 Gleichungen
Status: (Antwort) fertig Status 
Datum: 10:36 Mo 18.02.2008
Autor: Roadrunner

Hallo Caprice!


Du liegst mit den Ansätzen richtig. Folgende 3 Bestimmungsgleichungen für $f(x) \ = \ [mm] a*x^4+c*x^2+e$ [/mm] ergeben sich aus den gegebenen Eigenschaften:

$$f(2) \ = 0$$
$$f(1) \ = \ -6$$
$$f'(1) \ = \ -2$$
Ansonsten solltest Du mal Deine Rechenschritte posten zur Kontrolle ...


Gruß vom
Roadrunner


Bezug
                                
Bezug
Orthogonalität einer Tangente: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:51 Mo 18.02.2008
Autor: Caprice

Ich habe den Fehler jetzt gefunden. Es war ein ganz simpler Umstellungsfehler.

Nochmals danke für die schnellen Antworten!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]