matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungOrthogonalität/Abstand/uvm.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Orthogonalität/Abstand/uvm.
Orthogonalität/Abstand/uvm. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonalität/Abstand/uvm.: Aufgabe: Flugbahnen
Status: (Frage) beantwortet Status 
Datum: 17:39 Mo 05.03.2007
Autor: Hanz

Aufgabe
a) Gegeben sind die Punkte A(1/-1/0); B(1/4/1); C(2/0/-1) sowie die Gerade [mm] g:\vec{x}=\vektor{3\\ 6\\-1} [/mm] + [mm] s\vektor{6\\ -1\\-5} [/mm] mit s [mm] \in [/mm] R

Weisen Sie nach, dass die drei Punkte A,B und C nicht auf einer Geraden liegen.

b) Die Ebene E enthält drei Punkte A,B und C. ermitteln Sie eine Gleichung von E.

c) zeigen Sie, dass die Gerade g orthogonal zur Ebene E ist.

d)Berechnen Sie den Abstand des Punktes A von g.

Also gerechnet habe ich alle Teilaufgaben, meine Frage ist jetzt halt, ob meine Überlegungen und rechnungen stimmen/sinn ergeben.

a) Hier habe ich mir überlegt, die drei Punkte auf linerare Abhängigkeit zu überprüfen, indem ich die Vektoren [mm] \overrightarrow{AB} [/mm] und [mm] \overrightarrow{AC} [/mm] aufstelle.
[mm] \overrightarrow{AB}=\vektor{0 \\ 5\\1} [/mm]
[mm] \overrightarrow{AC}=\vektor{1 \\ 1\\-1} [/mm]

[mm] \vmat{ 0=& \lambda \\ 5= & \lambda} [/mm]
[mm] \Rightarrow [/mm] es gibt für [mm] \lambda [/mm] keine Lsg, also linear unabhängig und die Punkte liegen nicht auf einer Geraden.


b) E: [mm] \vec{x}=\vektor{1 \\ -1\\0}+\lambda\vektor{0 \\ 5\\1}+\mu\vektor{1 \\ 1\\-1} [/mm] mit [mm] \mu,\lambda \in [/mm] R

c) Eine Gerade heisst ja Orthogonale auf einer Ebene, wenn ihr Richtungsvektor ein Normalenvektor der Ebene ist.

Daher forme ich E in Normalenform um:
[mm] \vec{n}=\vektor{0 \\ 5\\1} \times \vektor{1 \\ 1\\-1} [/mm] = [mm] \vektor{6 \\ -1\\5} [/mm]
[mm] E:[\vec{x}-\vektor{1 \\ -1\\0}] \vektor{6 \\ -1\\5}=0 [/mm]
Da der Normalenvektor mit dem Richtungsvektor von g übereinstimmt, sind E und g orthogonal.

d) E in Koordinatenform umwandeln:
E: 6x-y+5z=7
Jetzt g in E einsetzten: 6(3+6s)-(6-s)+5(-1+5s)=7
<=> 18+36s-6+s-5+25s=7
<=> 7+62s=7
=> s = 0

Nun s in g einsetzten, um einen Punkt F zu bestimmen:
[mm] g:\vec{x}=\vektor{3\\ 6\\-1} [/mm] + [mm] 0\vektor{6\\ -1\\-5} [/mm]
=> F(3/6/-1)

[mm] d(A,g)=\wurzel{(3-1)²+(6+1)²+(-1-0)²}=\wurzel{54} [/mm]


So das wären meine Lösungen, weiss aber nicht ob sie so korrekt sind.
Mfg, A.

        
Bezug
Orthogonalität/Abstand/uvm.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 Mo 05.03.2007
Autor: homme

Grundsätzliche Vorgehensweise ist richtig und Rechenfehler habe ich im Moment auch keine Entdeckt. Müsste passen

Bezug
        
Bezug
Orthogonalität/Abstand/uvm.: Antwort
Status: (Antwort) fertig Status 
Datum: 09:00 Di 06.03.2007
Autor: informix

Hallo Hanz,

> a) Gegeben sind die Punkte A(1/-1/0); B(1/4/1); C(2/0/-1)
> sowie die Gerade [mm]g:\vec{x}=\vektor{3\\ 6\\-1}[/mm] +
> [mm]s\vektor{6\\ -1\\-5}[/mm] mit s [mm]\in[/mm] R
>  
> Weisen Sie nach, dass die drei Punkte A,B und C nicht auf
> einer Geraden liegen.
>  
> b) Die Ebene E enthält drei Punkte A,B und C. ermitteln Sie
> eine Gleichung von E.
>  
> c) zeigen Sie, dass die Gerade g orthogonal zur Ebene E
> ist.
>  
> d)Berechnen Sie den Abstand des Punktes A von g.
>  Also gerechnet habe ich alle Teilaufgaben, meine Frage ist
> jetzt halt, ob meine Überlegungen und rechnungen
> stimmen/sinn ergeben.
>  
> a) Hier habe ich mir überlegt, die drei Punkte auf linerare
> Abhängigkeit zu überprüfen, indem ich die Vektoren
> [mm]\overrightarrow{AB}[/mm] und [mm]\overrightarrow{AC}[/mm] aufstelle.
>  [mm]\overrightarrow{AB}=\vektor{0 \\ 5\\1}[/mm]
>  
> [mm]\overrightarrow{AC}=\vektor{1 \\ 1\\-1}[/mm]
>  
> [mm]\vmat{ 0=& \lambda \\ 5= & \lambda}[/mm]
>  [mm]\Rightarrow[/mm] es gibt
> für [mm]\lambda[/mm] keine Lsg, also linear unabhängig und die
> Punkte liegen nicht auf einer Geraden.
>  
>
> b) E: [mm]\vec{x}=\vektor{1 \\ -1\\0}+\lambda\vektor{0 \\ 5\\1}+\mu\vektor{1 \\ 1\\-1}[/mm]
> mit [mm]\mu,\lambda \in[/mm] R
>  
> c) Eine Gerade heisst ja Orthogonale auf einer Ebene, wenn
> ihr Richtungsvektor ein Normalenvektor der Ebene ist.
>  
> Daher forme ich E in Normalenform um:
>  [mm]\vec{n}=\vektor{0 \\ 5\\1} \times \vektor{1 \\ 1\\-1}[/mm] =
> [mm]\vektor{6 \\ -1\\5}[/mm]
>  [mm]E:[\vec{x}-\vektor{1 \\ -1\\0}] \vektor{6 \\ -1\\5}=0[/mm]
>  
> Da der Normalenvektor mit dem Richtungsvektor von g
> übereinstimmt, sind E und g orthogonal.
>  
> d) E in Koordinatenform umwandeln:
>  E: 6x-y+5z=7
>  Jetzt g in E einsetzten: 6(3+6s)-(6-s)+5(-1+5s)=7
>  <=> 18+36s-6+s-5+25s=7

>  <=> 7+62s=7

>  => s = 0

>  
> Nun s in g einsetzten, um einen Punkt F zu bestimmen:
>  [mm]g:\vec{x}=\vektor{3\\ 6\\-1}[/mm] + [mm]0\vektor{6\\ -1\\-5}[/mm]
>  =>

> F(3/6/-1)
>  
> [mm]d(A,g)=\wurzel{(3-1)²+(6+1)²+(-1-0)²}=\wurzel{54}[/mm]
>  
>
> So das wären meine Lösungen, weiss aber nicht ob sie so
> korrekt sind.
>  Mfg, A.

Kennst du die HNF MBHesse'sche Normalenform der Ebenengleichung?
Mit ihrer Hilfe kannst du noch schneller den MBAbstand berechnen.
Probier's mal, damit kannst du deine Rechnung gleich selbst überprüfen!

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]