matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteOrthogonalität
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Skalarprodukte" - Orthogonalität
Orthogonalität < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonalität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:00 Do 12.06.2008
Autor: maxi85

Aufgabe
3. Seien V ein K-Vektorraum mit Skalarprodukt < , > und V’, V” K-lineare Unterräume mit
(1) V = V’  [mm] \oplus [/mm] V”
(genauer, die lineare Abbildung V’ [mm] \oplus [/mm] V” -> V, (a,b) -> a+b, sei bijektiv). Weiter sei die Zerlegung 1 orthogonal. Zeigen sie, die Einschränkung
V’ x V’ -> K, (a,b) -> <a,b>, und V” x V” -> K, (a,b) -> <a,b>,
des Skalarprodukts auf die direkten Summanden sind Skalarprodukte.

Ok ich habe gegeben, dass

V = V' [mm] \oplus [/mm] V'' orhogonal, d.h.  <v',v''> = 0 für alle v' [mm] \in [/mm] V' , v'' [mm] \in [/mm] V''

Skalarprodukt heißt: symmetrische, nicht entartete Billinearform =>

I   b(x,y)=b(y,x)
II  rang A = n
III [mm] b(v,\lambda'w'+\lambda''w'')=\lambda'b(v,w')+\lambda''b(v,w'') [/mm]

Wenn ich die Aufgabenstellung richtig lese muss ich Bedingung I-III nachweisen.
Ich versuchs vorläufig mal mit I

I Sei f: V' x V' -> K, (a,b) -> <a,b>

[mm] f(a,b)==\summe_{i=1}^{n} (a_{1}b_{1}+...+a_{n}b_{n})=\summe_{i=1}^{n} (b_{1}a_{1}+...+b_{n}a_{n})==f(b,a) [/mm]

Wäre das bis dahin erstmal richtig oder habe ich mal wieder Brei im Kopf?

Danke für die Mithilfe schonmal im Vorraus, die Maxi

        
Bezug
Orthogonalität: Antwort
Status: (Antwort) fertig Status 
Datum: 11:05 Mo 16.06.2008
Autor: Kyle

Hallo Maxi,

leider ist Dein Ansatz noch nicht ganz richtig, da Du Dich nicht auf das Standardskalarprodukt beschränken kannst. Außerdem steht in der Aufgabenstellung nichts davon, daß es sich um einen endlich-dimensionalen Vektorraum handelt, ich weiß aber nicht, ob ihr vielleicht implizit davon ausgehen sollt.

Um die Aufgabe zu lösen, musst Du die Eigenschaften (I)-(III) für Dein ursprüngliches Skalarprodukt ausnutzen und diese dann für die Einschränkungen zeigen.

Hast Du zum Beispiel zwei Vektoren x und y aus V', so gilt b(x,y)=b(y,x) automatisch, da es sich um zwei Vektoren aus dem größeren Vektorraum handelt.

Der Trick ist dann, daß Du für die anderen Eigenschaften beliebige Vektoren aus V als Summe von Vektoren in V' und V'' schreibst und dann weißt, daß wegen der Orthogonalität das Skalarprodukt eines Vektors in V' und eines Vektors in V'' immer 0 ist.

Sollte das noch nicht reichen, frag ruhig noch mehr,
Gruß,
kyle

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]