matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenOrthogonale Abbildung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Orthogonale Abbildung
Orthogonale Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:30 Di 08.05.2012
Autor: Noob2332

Aufgabe
Sei l eine lineare Abbildung von S in sich,
S euklidicher Vektorraum mit Skalarprodukt <.,.> und Norm||x||= <.,.>
Zeigen Sie, dass l genau dann orthogonal ist, falls
|| l(x) || =|| x || für alle  x € S
x ist ein Vektor.

Was ich bisher aus der Aufgabenstellung entnehmen konnte...
l: S-->S . Mit dem euklidischen Vektorraum ist der [mm] R^3 [/mm] gemeint und die Norm
ist als das Skalarprodukt definiert.
Somit muss die Norm der Funktion l(x) auch ein Skalarprodukt sein, nur wie berechne ich denn das Skalarprodukt einer Funktion?
Das ist ja kein Vektor.
Bin bei der ganzen Aufgabenstellung ziemlich ratlos.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Orthogonale Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 Di 08.05.2012
Autor: fred97


> Sei l eine lineare Abbildung von S in sich,
>  S euklidicher Vektorraum mit Skalarprodukt <.,.> und

> Norm||x||= <.,.>

Wohl eher: $ ||x||=<x,x>^{1/2}$


>  Zeigen Sie, dass l genau dann orthogonal ist, falls
>  || l(x) || =|| x || für alle  x € S
>  x ist ein Vektor.
>  Was ich bisher aus der Aufgabenstellung entnehmen
> konnte...
>  l: S-->S . Mit dem euklidischen Vektorraum ist der [mm]R^3[/mm]
> gemeint

Ich kann das der Aufgabenstellung nicht entnehmen !


>  und die Norm
> ist als das Skalarprodukt definiert.

Nein. Die Norm ist über das Skalarprodukt def.:  $ ||x||=<x,x>^{1/2}$


>  Somit muss die Norm der Funktion l(x) auch ein
> Skalarprodukt sein, nur wie berechne ich denn das
> Skalarprodukt einer Funktion?
>  Das ist ja kein Vektor.


l(x) ist ein Vektor in S, also $ ||l(x)||=<l(x),l(x)>^{1/2}$

>  Bin bei der ganzen Aufgabenstellung ziemlich ratlos.

Zeigen sollst Du:

   l ist eine orthogonale Abbildung  [mm] \gdw [/mm] || l(x) || =|| x || für alle  x € S


FRED

>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]