matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteOrthogonalbasis, endl.K-VR
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Skalarprodukte" - Orthogonalbasis, endl.K-VR
Orthogonalbasis, endl.K-VR < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonalbasis, endl.K-VR: Korrektur, Rückfrage
Status: (Frage) überfällig Status 
Datum: 16:31 So 29.05.2011
Autor: Khisanth

Aufgabe
Sei V ein endlicher K-Vektorraum
a) sei Vein [mm] \IR [/mm] -Vektorraum mit regulärem, symmetrischem Skalarprodukt
Dann [mm] \exists [/mm] eine Orthogonalbasis [mm] B=(v_{1},....,v_{n}) [/mm] mit
[mm] [/mm] = 0 für i [mm] \not= [/mm] j und [mm] \in [/mm] {-1,1}
b) Sei V ein [mm] \IC [/mm] -Vektorraum mit regulärem, symmetrischem Skalarprodukt
[mm] Dann\exists [/mm] eine Orthonormalbasis [mm] B=(v_{1},....,v_{n}) [/mm] mit
[mm] = \begin{cases} 0, & \mbox{für } i \not= j \\ 1, & \mbox{für } i=j \end{cases} [/mm]
c) Sei V ein [mm] \IC [/mm] -Vektorraum mit regulärem, unitärem [mm] \alphsa [/mm] Skalarprodukt
Dann [mm] \exists [/mm] eine Orthogonalbasis [mm] B=(v_{1},....,v_{n}) [/mm] mit
[mm] [/mm] = 0 für i [mm] \not= [/mm] j und [mm] \in [/mm] {-1,1}

Beweis:
die Regularität das Skalarproduktes folgert ja [mm] =a_{j}= \alpha a_{j} \not= [/mm] 0
dann wähle ich ein 0 [mm] \not= b_{j} \in [/mm] K
dann ergibt sich für [mm] =b_{j}(\alpha b_{j})a_{j} [/mm]
dies betrachte ich jetzt für a,b,c

a) da wir ein Skalarprodukt haben ist [mm] \alpha =id_{K} [/mm]
ergibt also [mm] b_{j}^{2}a_{j}, [/mm] dann wähle ich [mm] b_{j}= 1:\wurzel{a_{j}} [/mm]
und das ist dann =1 bzw =-1 je nachdem ob [mm] a_{j} [/mm] postiv oder negativ
anders erhält man die -1 ja nicht, da [mm] b_{j} [/mm] sonst [mm] \in \IC [/mm] wäre.

b) es gilt wieder [mm] b_{j}^{2}a_{j}, [/mm] hier scheiterts bei mir etwas
ich würde [mm] b_{j} [/mm] wieder genauso wählen wie vorher und dann soll die Symmetrie und der komplexe Körper liefern, dass [mm] b_{j}^{2}a_{j}=1 [/mm] ist.
Mir ist schon klar, dass ich die 1 erhalten kannt aber noch recht unklar wie Symmetrie und [mm] \IC [/mm] genau das bewirken...
Wäre gut wenn mir da jmd weiterhelfen kann :)

c) da wir ein unitäres [mm] \alpha [/mm] Skalarprodukt haben gilt [mm] a_{j}=\overline{a_{j}} [/mm] und  es gilt: [mm] b_{j}(\alpha b_{j})a_{j}=b_{j}\overline{b_{j}} a_{j} [/mm]
dann wähle ich [mm] b_{j}=\pm i:\wurzel{a_{j}} [/mm] um -1 zu erreichen
und [mm] b_{j}=1:\wurzel{a_{j}} [/mm] um 1 zu erreichen

Über Rückmeldung ob ich das alles so machen kann und über eventuelle Hilfe bei b) würde ich mich sehr freuen!
Grüße


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheboard.de/thread.php?threadid=458208



        
Bezug
Orthogonalbasis, endl.K-VR: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:24 Di 31.05.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]