matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesOrthogonalbasis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Orthogonalbasis
Orthogonalbasis < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonalbasis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 Mi 17.09.2008
Autor: Elfe

Aufgabe
Zu der Matrix A:= [mm] \pmat{ -1 & 0 & 0 & -3 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ -3 & 0 & 0 & -1 } \in M(4x4,\IR) [/mm] haben wir die Bilinearform auf [mm] \IR^{4} [/mm]
b: [mm] \IR^{4} [/mm] x [mm] \IR^{4} \to \IR, ((x_{1},x_{2},x_{3},x_{4}),(y_{1},y_{2},y_{3},y_{4})) \mapsto (x_{1} x_{2} x_{3} x_{4}) [/mm] A [mm] \vektor{y_{1} \\ y_{2} \\ y_{3} \\ y_{4}} [/mm]

a. Bestimmen Sie das [mm] cp_{A} [/mm]
b. Bestimmen Sie eine Orthogonalbasis des symmetrischen bilinearen Raums [mm] (\IR^{4},b) [/mm]
c. Bestimmen Sie Untervektorräume [mm] U_{+}, U_{-}, U_{0} [/mm] von [mm] \IR^{4}, [/mm] so dass gelten
i) [mm] \IR^{4} [/mm] = [mm] U_{+} \perp U_{-} \perp U_{0} [/mm] (bezüglich b)
ii) [mm] b|_{U_{+}} [/mm] ist positiv definit, [mm] b|_{U_{-}} [/mm] ist negativ definit, [mm] b|_{U_{0}}=0 [/mm]

Hallo,

also das [mm] cp_{A} [/mm] habe ich bestimmt. Jetzt muss ich ja bei b zuerst die Eigenvektoren bestimmen. Habe ich auch gemacht. Aber ist das direkt die Orthogonalbasis, oder muss ich bei dem Eigenwert, wo ich zwei Eigenvektoren finde, zuerst noch etwas anderes machen um die Orthogonalbasis zu bekommen? Sowas ähnliches wie das Gram-Schmidt-Verfahren für die Orthonormalbasis? Oder war's das schon dann wenn ich die 4 Eigenvektoren haben?

Gruß Elfe

        
Bezug
Orthogonalbasis: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Mi 17.09.2008
Autor: pelzig


> also das [mm]cp_{A}[/mm] habe ich bestimmt. Jetzt muss ich ja bei b
> zuerst die Eigenvektoren bestimmen. Habe ich auch gemacht.
> Aber ist das direkt die Orthogonalbasis, oder muss ich bei
> dem Eigenwert, wo ich zwei Eigenvektoren finde, zuerst noch
> etwas anderes machen um die Orthogonalbasis zu bekommen?
> Sowas ähnliches wie das Gram-Schmidt-Verfahren für die
> Orthonormalbasis? Oder war's das schon dann wenn ich die 4
> Eigenvektoren haben?

Ich denke du hast da jetzt was durcheinander. Die Eigenvektoren haben damit erstmal nix zu tun. Es geht darum eine Basis [mm] $\{b_i\}$ [/mm] von [mm] $\IR^4$ [/mm] zu finden, sodass [mm] $b(b_i,b_j)=0$ [/mm] für [mm] $i\ne [/mm] j$ ist. Das macht man mit dem Gram-Schmidt-Algorithmus, nur dass du jetzt nicht das normale Standartskalarprodukt dabei benutzen musst, sondern $b$.

Gruß, Robert

Bezug
                
Bezug
Orthogonalbasis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:50 Mi 17.09.2008
Autor: Elfe

Hmm die haben damit nix zu tun? Weil in der Lösung meines Tutors stehen nämlich die Eigenvektoren als eben diese Orthogonalbasis. Ist das dann in diesem Fall Zufall? Ich bin ganz verwirrt!

Bezug
                        
Bezug
Orthogonalbasis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Mi 17.09.2008
Autor: pelzig


> Hmm die haben damit nix zu tun? Weil in der Lösung meines
> Tutors stehen nämlich die Eigenvektoren als eben diese
> Orthogonalbasis. Ist das dann in diesem Fall Zufall? Ich
> bin ganz verwirrt!

Tut mir Leid, ich habe mich wiedermal geirrt, war wohl etwas voreilig. Ich habe es jetzt nachgerechnet, es stimmt in diesem Fall und es ist auch kein Zufall.
Ich bin etwas durcheinander gekommen weil man ja einmal den Endomorphismus [mm] $\alpha:\IR^4\ni x\mapsto Ax\in \IR^4$ [/mm] hat und zum anderen die sym. Bilinearform [mm] $\gamma:\IR^4\times\IR^4\ni(x,y)\mapsto x^tBy\in \IR$. [/mm] Diese beiden Dinge haben ja erstmal nicht viel miteinander zu tun, aber in diesem speziellen Fall, wo $A=B$ ist, klappt es eben (du kannst dir ja mal den Beweis überlegen, falls dus nicht schon getan hast, ist ganz hübsch).

Ok du siehst man lernt nie aus. Jedenfalls musst du natürlich wie vorhin auch die Eigenvektoren, die zu einem Eigenwert gehören, ggf. noch orthogonalisieren, falls das nicht schon der Fall ist, aber das ist dann wirklich Zufall.

Gruß, Robert



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]