matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperOrdnung von Elementen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Ordnung von Elementen
Ordnung von Elementen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnung von Elementen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:08 Fr 24.02.2012
Autor: denzil

Aufgabe
Zu Zeigen: Die multiplikative Einheitengruppe des Ringes [mm] \IZ/18\IZ [/mm] ist isomorph zu [mm] \IZ/6\IZ [/mm]

Es gilt: multiplikative Einheitengruppe [mm] (\IZ/18\IZ)^{\times} [/mm] = {1, 5, 7, 11, 13, 17} (Für Einheit a in [mm] \IZ/p\IZ [/mm] muss gelten ggT(a,p) = 1).

Für die Ordnungen gilt:
<1> = 1
<5> = 6
<7> = 3
<11> = 3
<17> = 2

Passt nach Satz von Lagrange alles.

Nun zum eigentlichen Problem, [mm] \IZ/6\IZ [/mm] = {0, 1, 2, 3, 4, 5}. Hier gilt doch ebenfalls die Multiplikation als Verknüpfung, oder? Denn dann finde keine Ordnung von 2, 3, 4, 5...

Ohne die Ordnungen zu kennen kann ich auch keinen Isomorphismus von [mm] (\IZ/18\IZ)^{\times} [/mm] nach [mm] \IZ/6\IZ [/mm] finden.

Wo liegt mein Fehler?

        
Bezug
Ordnung von Elementen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:20 Fr 24.02.2012
Autor: Schadowmaster

moin,

[mm] $\IZ/6\IZ$ [/mm] ist hier mit der Addition gemeint.

Auch wenn das da nicht steht, kannst du es etwa daran erkennen, dass es multiplikativ gar keine Gruppe wäre (etwa die 0 wäre nicht invertierbar).
Für den Isomorphismus bedenke nun:
Sowohl die Einheitengruppe als auch [mm] $\IZ/6\IZ$ [/mm] sind zyklisch, das heißt von einem einzigen Element erzeugt.
Benutzt du diese Eigenschaft (und suchst ggf. noch ein Element der Ordnung 6 in [mm] $\IZ/6\IZ$) [/mm] so dürftest du die Aufgabe hinkriegen.

lg

Schadow

Bezug
                
Bezug
Ordnung von Elementen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 00:23 Sa 25.02.2012
Autor: denzil

Vielen Dank für deine Antwort,

aber in der Aufgabe selbst steht gar nicht, dass es sich um {0, 1, 2, 3, 4, 5} handelt. Das war meine Interpretation. Schließlich ist das doch egal ob 1-6 oder 0-5?!
Woraus kann ich alleine aus den Angaben der Fragestellung (s. 1. Eintrag) schließen, dass es sich um die additive Gruppe handelt?

Bezug
                        
Bezug
Ordnung von Elementen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:55 Sa 25.02.2012
Autor: Schadowmaster

Nun, zum einen ist modulo 6 betrachtet, [mm] $\{0,1,2,3,4,5\} [/mm] = [mm] \{1,2,3,4,5,6\}$, [/mm] also ist das nicht das Problem.
Davon abgesehen kannst du [mm] $\IZ/6\IZ$ [/mm] eben nicht multiplikativ auffassen, weil es dann eben keine Gruppe mehr wäre; und Gruppenisomorphie ist sinnlos, wenn einer der beteiligten keine Gruppe ist.

Daher weißt du, dass [mm] $\IZ/6\IZ$ [/mm] hier additiv gemeint ist.

lg

Schadow

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]