matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperOrdnung endlicher Gruppen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Ordnung endlicher Gruppen
Ordnung endlicher Gruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnung endlicher Gruppen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:02 Sa 02.01.2010
Autor: moerni

Hallo,
Ich habe ein paar Fragen:
Sei G eine endliche abelsche Gruppe und H eine Untergruppe von G.

1. Dann gilt ja, dass H ein Normalteiler von G ist (da G abelsch), oder?
2. Angenommen H hat die Ordnung m, also |H|=m. Was kann ich daraus entnehmen? Ich weiß also, dass die Anzahl der Elemente in H gleich m ist und m ist ein Teiler der Anzahl der Elemente in G (wegen Lagrange), richtig? Kann ich weiter argumentieren: [mm] H=\{x \in G: xm=0\}? [/mm] Dann wäre [mm] H=G_m [/mm] und [mm] |H|=|G_m|=|g_G(m)|? [/mm]

Über eine Antwort wäre ich sehr dankbar.
moerni

        
Bezug
Ordnung endlicher Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 Sa 02.01.2010
Autor: pelzig


> 1. Dann gilt ja, dass H ein Normalteiler von G ist (da G
> abelsch), oder?

Ja.

> 2. Angenommen H hat die Ordnung m, also |H|=m. Was kann
> ich daraus entnehmen? Ich weiß also, dass die Anzahl der
> Elemente in H gleich m ist und m ist ein Teiler der Anzahl
> der Elemente in G (wegen Lagrange), richtig?

Ja.

> Kann ich weiter argumentieren: [mm]H=\{x \in G: xm=0\}?[/mm] Dann wäre [mm]H=G_m[/mm]
> und [mm]|H|=|G_m|=|g_G(m)|?[/mm]

Was soll das alles bedeuten? Was meinst du mit [mm]xm[/mm], [mm] $G_m$ [/mm] und [mm] $g_G(m)$? [/mm]

Gruß, Robert

Bezug
                
Bezug
Ordnung endlicher Gruppen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:27 Sa 02.01.2010
Autor: moerni

Danke erstmal für die rasche Antwort.
Das alles gehört zu einer Aufgabe: G endliche abelsche Gruppe, H [mm] \le [/mm] G Untergruppe derart, dass |H| und [G:H] teilerfremd sind. Ich muss unter anderem zeigen, dass H ein Komplement K in G hat (Dh. Es gibt ein K [mm] \le [/mm] G mit HK=G und H [mm] \cap [/mm] K = [mm] \{e\}. [/mm]
Wir hatten in der Vorlesung (als Hinführung zum Thema Möbiusfunktion) Eine Bemerkung: "(G,+) endlich abelsch. Die Anzahl aller x in G der Ordnung n ist [mm] f_G(n)=|\{x \in G: ord(x)=n\}|. [/mm] Leichter zu bestimmen ist [mm] g_G(n)=|\{x \in G: nx = 0\}|" [/mm] - was das genau heißen soll, hab ich mich auch schon gefragt....
Ich habe mir überlegt, dass ich das irgendwie benutzen könnte...? Denn wäre es so, dass [mm] H=\{x \in G: mx = 0\}, [/mm] definiere n=[G:H]=|K| mit [mm] K=\{x \in G: nx = 0\}. [/mm] Dann könnte ich zeigen, dass H [mm] \cap [/mm] K = [mm] \{0\} [/mm] ist, denn aus mx=nx=0 folgt x=(km+ln)x=0 (da ggT(m,n)=1).
Mir ist bewusst, dass ich hier e=0 setze, das ist noch nicht ganz richtig.
Bin ich bei meinen Ansätzen auf dem richtigen Weg oder ist das alles Quatsch?
grüße moerni

Bezug
                        
Bezug
Ordnung endlicher Gruppen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 05.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]