Ordnung Gruppenelement < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 13:17 Mi 27.02.2008 | Autor: | fkerber |
Aufgabe | a) Welche Ordnung hat die Symmetriegruppe G des Oktaeders?
b) Welche Ordnungen treten für Elemente von G auf? |
Hi!
Also die Ordnung von G ist 48 - das ist denke ich soweit kein Problem. Gemacht habe ich es folgendermaßen (Kurzfassung):
Ich nehme einen Punkt in der Mitte einer Seite, Bahn ist dann 8, Stabilisator ist isomorph D3 , dann hab ich 8*6 = 48.
Ok? (Geht doch immer so, mit Punkt in Seitenmitte und dann hab ich den Stab immer Isomorph zu irgendeinenm Dx, oder?)
So zu b)
Wenn ich bspw. S7 habe, dann hab ich ja Elemente der Ordnung 1,2,3,4,5,6,7,10,12
Theorie, also bis x (bei Sx) hab ich die Elemente dieser Ordnung immer drin (also 1-7 hier) und dann schau ich mal noch, was ich aus den Zahlen so basteln kann, also 2*5 (also ein Zweier-Zykel und ein 5er) etc.
Nur was mach ich beim Oktaeder? G ist ja nicht isomorph zu irgendeinem Sx, was tue ich da?
Danke.
Ciao, Frederic
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:16 Mi 27.02.2008 | Autor: | statler |
Hi!
Ich habe diesen Beitrag verschoben.
> a) Welche Ordnung hat die Symmetriegruppe G des Oktaeders?
> b) Welche Ordnungen treten für Elemente von G auf?
> Also die Ordnung von G ist 48 - das ist denke ich soweit
> kein Problem. Gemacht habe ich es folgendermaßen
> (Kurzfassung):
> Ich nehme einen Punkt in der Mitte einer Seite, Bahn ist
> dann 8, Stabilisator ist isomorph D3 , dann hab ich 8*6 =
> 48.
Ich bin mir im Moment nicht ganz sicher, ob das wirklich so ist. Es könnte nämlich sein, daß nur die Drehungen gemeint sind, davon gibt es 24; man kann sie relativ einfach aufzählen. (Und übrigens auch ihre Ordnungen.)
Mein Zweifel rührt daher, daß die sogenannte Ikosaedergruppe 60 Elemente hat, und das sind auch alles Drehungen.
Beim Oktaeder hast du für eine Ecke A zunächst 6 Möglichkeiten. Dann gibt es für eine mit A durch eine Kante verbundene Ecke noch 4 Möglichkeiten, und damit liegt die Abbildung fest, wenn ich das Oktaeder als 'starr' ansehe. Insgesamt also 24.
Ich muß noch mal nachdenken.
Gruß aus HH-Harburg
Dieter
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:52 Mi 27.02.2008 | Autor: | fkerber |
Hi!
Danke fürs Verschieben - hab das Unterforum irgendwie übersehen.
Also das mit den 48 ist nach unserem Skript / Vorlesung OK - die Symmetriegruppe des Ikosaeders hat bei uns auch 120 Elemente - wir haben da also nicht nur die Drehungen drin.
Siehe dazu auch:
http://de.wikipedia.org/wiki/Ikosaeder
Dort wird im ersten Abschnitt auf diese Unterscheidung eingegangen.
Also die Zahl 48 ist an sich ok...
Ciao, Frederic
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:20 Mi 05.03.2008 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|