matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperOrdnung Gruppenelement
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Ordnung Gruppenelement
Ordnung Gruppenelement < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnung Gruppenelement: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:17 Mi 27.02.2008
Autor: fkerber

Aufgabe
a) Welche Ordnung hat die Symmetriegruppe G des Oktaeders?
b) Welche Ordnungen treten für Elemente von G auf?

Hi!

Also die Ordnung von G ist 48 - das ist denke ich soweit kein Problem. Gemacht habe ich es folgendermaßen (Kurzfassung):
Ich nehme einen Punkt in der Mitte einer Seite, Bahn ist dann 8, Stabilisator ist isomorph D3 , dann hab ich 8*6 = 48.
Ok? (Geht doch immer so, mit Punkt in Seitenmitte und dann hab ich den Stab immer Isomorph zu irgendeinenm Dx, oder?)

So zu b)
Wenn ich bspw. S7 habe, dann hab ich ja Elemente der Ordnung 1,2,3,4,5,6,7,10,12
Theorie, also bis x (bei Sx) hab ich die Elemente dieser Ordnung immer drin (also 1-7 hier) und dann schau ich mal noch, was ich aus den Zahlen so basteln kann, also 2*5 (also ein Zweier-Zykel und ein 5er) etc.

Nur was mach ich beim Oktaeder? G ist ja nicht isomorph zu irgendeinem Sx, was tue ich da?

Danke.

Ciao, Frederic


        
Bezug
Ordnung Gruppenelement: 1 Anfang
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:16 Mi 27.02.2008
Autor: statler

Hi!

Ich habe diesen Beitrag verschoben.

> a) Welche Ordnung hat die Symmetriegruppe G des Oktaeders?
>  b) Welche Ordnungen treten für Elemente von G auf?

> Also die Ordnung von G ist 48 - das ist denke ich soweit
> kein Problem. Gemacht habe ich es folgendermaßen
> (Kurzfassung):
>  Ich nehme einen Punkt in der Mitte einer Seite, Bahn ist
> dann 8, Stabilisator ist isomorph D3 , dann hab ich 8*6 =
> 48.

Ich bin mir im Moment nicht ganz sicher, ob das wirklich so ist. Es könnte nämlich sein, daß nur die Drehungen gemeint sind, davon gibt es 24; man kann sie relativ einfach aufzählen. (Und übrigens auch ihre Ordnungen.)

Mein Zweifel rührt daher, daß die sogenannte Ikosaedergruppe 60 Elemente hat, und das sind auch alles Drehungen.

Beim Oktaeder hast du für eine Ecke A zunächst 6 Möglichkeiten. Dann gibt es für eine mit A durch eine Kante verbundene Ecke noch 4 Möglichkeiten, und damit liegt die Abbildung fest, wenn ich das Oktaeder als 'starr' ansehe. Insgesamt also 24.

Ich muß noch mal nachdenken.

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Ordnung Gruppenelement: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:52 Mi 27.02.2008
Autor: fkerber

Hi!

Danke fürs Verschieben - hab das Unterforum irgendwie übersehen.

Also das mit den 48 ist nach unserem Skript / Vorlesung OK - die Symmetriegruppe des Ikosaeders hat bei uns auch 120 Elemente - wir haben da also nicht nur die Drehungen drin.

Siehe dazu auch:
http://de.wikipedia.org/wiki/Ikosaeder
Dort wird im ersten Abschnitt auf diese Unterscheidung eingegangen.

Also die Zahl 48 ist an sich ok...


Ciao, Frederic

Bezug
        
Bezug
Ordnung Gruppenelement: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mi 05.03.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]