matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreOrdinalzahl ω2
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mengenlehre" - Ordinalzahl ω2
Ordinalzahl ω2 < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordinalzahl ω2: Tipp/Rückfrage
Status: (Frage) überfällig Status 
Datum: 14:23 So 05.01.2014
Autor: Vidane

Aufgabe
"Man prüft nun leicht nach, dass ω2 eine Ordinalzahl ist. Das hängt natürlich von der Definition der Ordnung in ω2 ab; die naheliegende Definition dieser Ordnung und der Beweis seien dem Leser als Übungsaufgabe überlassen." (P.Halmos, Naive Mengenlehre)

Hey Leute,
Ich hätte noch eine weitere Frage zu dem Thema Ordinalzahlen und wieder aus dem Buch "Naive Mengenlehre" von Halmos.
Auch bei diesem Beweis bräuchte ich eure Hilfe.

Wieder eine Klärung der Begrifflichkeiten:
- Der Nachfolger x+1 einer Menge x wird als $ x [mm] \cup \left\{ x\right\} [/mm] $ definiert.
- $ [mm] \omega [/mm] $ ist die kleinste Menge, die 0 enthält und mit einer Menge x auch stets deren Nachfolger x+1.
- 0, 1, 2, ..., [mm] \omega, \omega+1, \omega+2, [/mm] ..., [mm] \omega2, \omega2+1, [/mm] .. usw
- $ [mm] \omega2=\omega \cup [/mm] ran(f) $, wobei ran(f) der Wertebereich einer Funktion f ist, deren Elemente so aussehen: [mm] f(n)=\omega+n [/mm] (für n in [mm] \omega) [/mm]
- Also [mm] \omega2 [/mm] besteht aus allen n (mit n in [mm] \omega) [/mm] und allen [mm] \omega+n [/mm] (mit n in [mm] \omega). [/mm]
- Definition Ordinalzahl: Eine Ordinalzahl wird definiert als wohlgeordnete Menge [mm] \alpha [/mm] mit der Eigenschaft, dass [mm] s(\xi)=\xi [/mm] für alle [mm] \xi [/mm] in [mm] \alpha, [/mm] wobei [mm] s(\xi)=\left\{ \eta\in\alpha : \eta < \xi \right\} [/mm]
- Wenn [mm] \alpha [/mm] Ordinalzahl, dann auch [mm] \alpha+1. [/mm]
- [mm] \omega [/mm] ist eine Ordinalzahl.

Nun zu meinem Versuch:
Als Ordnung hatte ich mir überlegt, dass es wohl die Elementbeziehung [mm] \in [/mm] ist.

Wenn [mm] $\xi \in \omega \cup [/mm] ran(f)$, dann ist entweder [mm] \xi \in \omega [/mm] oder [mm] $\xi \in [/mm] ran(f) $.
1. Fall: [mm] \xi \in \omega: [/mm] Da wir bereits hatten, dass [mm] \omega [/mm] Ordinalzahl und Elemente einer Ordinalzahl wieder Ordinalzahlen, gilt sowieso [mm] s(\xi)=\xi [/mm]
2. Fall: [mm] $\xi \in [/mm] ran(f)$: also [mm] \xi=\omega+n, [/mm] für ein $n [mm] \in \omega$. [/mm] Da wir hatten, dass Nachfolger einer Ordinalzahl wieder Ordinalzahlen sind, gilt auch hier [mm] s(\xi)=\xi [/mm]

Soweit passt das hoffentlich. Ich bin mir nur nicht sicher, ob ich noch was zur Wohlordnung sagen. Ist die sowieso gegeben?

Ich wäre über jegliche Hilfe sehr dankbar,
Gruß Vidane.

        
Bezug
Ordinalzahl ω2: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 07.01.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]