Optimierungsproblem < Politik/Wirtschaft < Geisteswiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:49 Di 28.12.2010 | Autor: | Kadea |
Hi,
muss für das VWL Studium eine superschwere Aufgabe lösen. Kann mir vielleicht jemand helfen? Ich verstehe nur Bahnhof und weiß gar nicht was der Prof da eigentlich von mir will obwohl ich das Skript von oben und unten dreimal durchgelesen hab... :-((Wäre euch ewig dankbar!!!!!
Ein Unternehmen stellt zwei Güter mit den Produktionsfunktionen [mm] x_1= F_1 (L_1) [/mm] und [mm] x_2=F_2(L_2), \bruch{dF_i(L_i)}{dL_i} [/mm] > 0> [mm] \bruch{d^2F_i(L_i)}{dL_i^2} [/mm] her, wobei [mm] L_i [/mm] den Einsatz an Arbeitskraft in der Produktion des Guts i bezeichnet. Die Preise der Outputgüter [mm] p_i [/mm] und der Lohn w seien für das Unternehmen gegebene Größen. Kurzfristig verfügt das Unternehmen über eine gegebene Stammbelegschaft von [mm] \bar [/mm] L.
1. Geben Sie die Bedingung(en) erster und zweiter Ordnung für eine gweinnmaximierende Verteilung der gesamten Stammbelegschaft auf die beiden Produktionsprozesse an. Nebenbedingungen in Ungleichungsform müssen dabei nicht berücksichtigt werden.
|
|
|
|
Hi Kadea,
> Ein Unternehmen stellt zwei Güter mit den
> Produktionsfunktionen [mm]x_1= F_1 (L_1)[/mm] und [mm]x_2=F_2(L_2), \bruch{dF_i(L_i)}{dL_i}[/mm]
> > 0> [mm]\bruch{d^2F_i(L_i)}{dL_i^2}[/mm] her, wobei [mm]L_i[/mm] den Einsatz
> an Arbeitskraft in der Produktion des Guts i bezeichnet.
> Die Preise der Outputgüter [mm]p_i[/mm] und der Lohn w seien für
> das Unternehmen gegebene Größen. Kurzfristig verfügt das
> Unternehmen über eine gegebene Stammbelegschaft von [mm]\bar[/mm]
> L.
> 1. Geben Sie die Bedingung(en) erster und zweiter Ordnung
> für eine gweinnmaximierende Verteilung der gesamten
> Stammbelegschaft auf die beiden Produktionsprozesse an.
> Nebenbedingungen in Ungleichungsform müssen dabei nicht
> berücksichtigt werden.
zuerst muss du dich Fragen wann eine Situation für das Unternehmen entsteht, die gewinnmaximal ist. Ist diesem recht einfachen Modell ist das dann gegeben, wenn die Grenzerlöse den Grenzkosten entsprechend. Demnach musst du für beide Funktionen eben diese Grenzfunktionen gegenüberstellen, und kannst somit die Bedingungen angeben, die dafür notwendig sind damit diese Situation eintritt. Dabei musst du beachten, das die Bedingungen zweiter Ordnung jeweils die zweite Ableitung erfordern, udn nicht mehr die Steigung sondern das Krümmungsverhalten der Produktionsfunktion angeben.
Liebe Grüße
Analytiker
|
|
|
|