matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesOptimierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Optimierung
Optimierung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Optimierung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:53 Mi 10.02.2010
Autor: papillon

Aufgabe
Loesen Sie das folgende Optimierungsproblem unter Verwendung der Kuhn-Tucker Methode.

[mm] \summe_{i=1}^n w_i b_i [/mm] = max.
unter Einhaltung von
[mm] \summe_{i=1}^n b_i [/mm] = 1 und [mm] b_i \ge [/mm] 0.

Hallo!

Ich habe die Aufgabe zunaechst in eine Minimierung umgewandelt und die Lagrangefunktion aufgestellt:

L = [mm] -\summe_{i=1}^n w_i b_i [/mm] + [mm] \lambda (\summe_{i=1}^n b_i [/mm] - 1) - [mm] \summe_{i=1}^n \mu_i b_i [/mm]

Dabei ist [mm] \lambda [/mm] mein Langrange-Mulitplikator und die [mm] \mu_i [/mm] sind meine Kuhn-Tucker Multiplikatoren.

Folgende notwendinge Bedingungen ergeben sich:

[mm] \bruch{dH}{db_i}=-w_i+\lambda-\mu_i [/mm] = 0
[mm] \bruch{dH}{\lambda}=\summe_{i=1}^n b_i [/mm] - 1=0
[mm] \mu_i \ge [/mm] 0.

Dann wollte ich Fallunterscheidungen machen, je nachdem ob die Ungleichungsnebenbedingung erfuellt ist, oder nicht. Aber im Grunde muss ich das ja fuer jedes [mm] \mu_i [/mm] separat durchfuehren, oder? Das will mir nicht gelingen. Noch besser waere es, wenn ich die Aufgabe in Vektorschreibweise loesen koennte, also

[mm] w^T [/mm] b = min
[mm] b^T [/mm] e-1=0
-b [mm] \le [/mm] 0

L = [mm] -w^T b+\lambda(b^T e-1)-u^T [/mm] b

Dabei sind w, b, [mm] \mu [/mm] Vektoren und e ist der Einheitsvektor.

Allerdings komme ich da dann auch nicht weiter.

Kann mir jemand weiterhelfen?

Papi

        
Bezug
Optimierung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 So 14.02.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]