matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeOptimierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Extremwertprobleme" - Optimierung
Optimierung < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Optimierung: Aufgabe 21 (Mathem. Analysis)
Status: (Frage) beantwortet Status 
Datum: 13:17 So 21.05.2006
Autor: Stefo

Aufgabe
In eine Kuge mit dem Radius R ist ein gerader Kreidkegel vom Radius r und der Höhe h einbeschrieben.

a) Ermitteln Sie den Term V(phi), der das Kegelvolumen in Abhängigkeit von der Größe phi des Winkels zwischen der Kegelhöhe und einer Mantellinie darstellt. Wie groß muss dieser Winkel sein, damit das Kegelvolumen maximal wird?

b) Drücken Sie die Kegelvolumenfunktion durch andere Variablen aus und diskutieren Sie eine dieser Funktionen.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:

Hey Leute!

Also ich komm einfach nicht auf die entscheidenende Bedingung, dass ich eine Funktion aufstellen kann, in der nur phi und kein r oder h vor kommt. Den Satz des Pytagoras hab ich schon angewandt und den Sinus- bzw. Cosinussatz in Abhängigkeit von der fehlenden Seite s hab ich auch schon ausprobiert. Es hift mir alles nichts weiter.

Es muss doch eine Beziehung sein, in der berücksichtigt wird, dass, wenn h größer wird, r auch kleiner wir und umgekehrt, oder?

Danke im voraus!

        
Bezug
Optimierung: Hilfslinien
Status: (Antwort) fertig Status 
Datum: 17:19 Mo 22.05.2006
Autor: chrisno

Hallo Stefo,

denk Dir einen Schnitt durch die Kugel, natürlich so dass Du einen Schnittkreis mit dem Radius R erhälst. Der Kegel wird nun ein gleichschenkliges Dreieck. Zeichne vom Mittelpunkt der Kugel die drei Radien ein, die die Eckpunkte des Deiecks treffen. Dadurch wird dieses in drei gleichschenklige Dreiecke zerlegt, die jeweils für die gleichlangen Seiten die Länge R haben. Die Höhe der Pyramide erhälst Du aus der Summe der Höhe des einen Dreiecks und R.
Reicht das?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]