matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisOperatornorm berechnen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionalanalysis" - Operatornorm berechnen
Operatornorm berechnen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Operatornorm berechnen: Idee
Status: (Frage) beantwortet Status 
Datum: 19:47 Mi 15.07.2015
Autor: Laura22

Aufgabe
Zeigen Sie, dass der Operator

   [mm] A:l^2 \to l^2 [/mm]
   [mm] (x_n)_{n \in \IN} \mapsto (x_n/n)_{n \in \IN} [/mm]

beschränkt ist und berechnen Sie weiter seine Operatornorm.

Anmerkung: [mm] l^2 [/mm] sei der Raum der quadratsummierbaren Folgen in [mm] \IC. [/mm]



Hi :),

bei der obigen Aufgabe habe ich Probleme eine untere Schranke für die Operatornorm zu finden. Ich kann ja zunächst einmal schreiben, was ich glaube schon herausgefunden zu haben:

Beschränktheit: Sei x [mm] \in l^2 [/mm] beliebig. Dann gilt
[mm] \|Ax\|_{2}^2= \|(x_n/n)_{n \in \IN}\|_{2}^2 [/mm] = [mm] \summe_{k=1}^{\infty} \bruch{|x_k|}{|k|} \leq (\summe_{k=1}^{\infty} |x_k|^2) \cdot (\summe_{k=1}^{\infty} k^{-4}) [/mm] (nach Cauchy-Schwarz)
[mm] \leq [/mm] C [mm] \cdot \|x\|_{2}^2, [/mm] da die Reihe [mm] (\summe_{k=1}^{\infty} k^{-4}) [/mm] konvergiert.

Durch die Beschränktheit bekommen wir dann automatisch auch eine obere Schranke für die Operatornorm. Diese lautet

[mm] \|A\| \leq (\summe_{k=1}^{\infty} |k^{-4}|)^{\bruch{1}{2}} [/mm]

Wie man nun eine obere Schranke findet, weiß ich nicht...habt ihr vielleicht eine Idee? ich bedanke mich im Voraus!!!

Viele Grüße,
Laura

        
Bezug
Operatornorm berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Mi 15.07.2015
Autor: fred97


> Zeigen Sie, dass der Operator
>
> [mm]A:l^2 \to l^2[/mm]
>     [mm](x_n)_{n \in \IN} \mapsto (x_n/n)_{n \in \IN}[/mm]
>  
> beschränkt ist und berechnen Sie weiter seine
> Operatornorm.
>  
> Anmerkung: [mm]l^2[/mm] sei der Raum der quadratsummierbaren Folgen
> in [mm]\IC.[/mm]
>  
>
> Hi :),
>  
> bei der obigen Aufgabe habe ich Probleme eine untere
> Schranke für die Operatornorm zu finden. Ich kann ja
> zunächst einmal schreiben, was ich glaube schon
> herausgefunden zu haben:
>  
> Beschränktheit: Sei x [mm]\in l^2[/mm] beliebig. Dann gilt
>  [mm]\|Ax\|_{2}^2= \|(x_n/n)_{n \in \IN}\|_{2}^2[/mm] =
> [mm]\summe_{k=1}^{\infty} \bruch{|x_k|}{|k|} \leq (\summe_{k=1}^{\infty} |x_k|^2) \cdot (\summe_{k=1}^{\infty} k^{-4})[/mm]
> (nach Cauchy-Schwarz)


Schon das erste "=" oben ist falsch. Es ist

[mm] ||Ax||_2^2=\summe_{k=1}^{\infty} \bruch{|x_k|^2}{k^2} [/mm]

Eine weitere Abschätzung mit Cauchy - Schwarz bringt nichts ! (Warum ?)



> [mm]\leq[/mm] C [mm]\cdot \|x\|_{2}^2,[/mm] da die Reihe
> [mm](\summe_{k=1}^{\infty} k^{-4})[/mm] konvergiert.
>  
> Durch die Beschränktheit bekommen wir dann automatisch
> auch eine obere Schranke für die Operatornorm. Diese
> lautet
>  
> [mm]\|A\| \leq (\summe_{k=1}^{\infty} |k^{-4}|)^{\bruch{1}{2}}[/mm]
>
> Wie man nun eine obere Schranke findet, weiß ich
> nicht...habt ihr vielleicht eine Idee? ich bedanke mich im
> Voraus!!!

Also

[mm] ||Ax||_2^2=\summe_{k=1}^{\infty} \bruch{|x_k|^2}{k^2} \le \summe_{k=1}^{\infty}|x_k|^2 [/mm] = [mm] ||x||_2^2. [/mm]

Somit:

[mm] ||Ax||_2 \le ||x||_2. [/mm]

Es folgt: $||A|| [mm] \le [/mm] 1$

Nun finde ein $x [mm] \in l^2$ [/mm] mit [mm] ||Ax||_2 [/mm] = [mm] ||x||_2. [/mm]

Dann ist ||A||=1.

FRED

>  
> Viele Grüße,
>  Laura


Bezug
                
Bezug
Operatornorm berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:22 Do 16.07.2015
Autor: Laura22

Ahhh, du hast Recht! Für die untere Schranke könnte ich dann doch einfach den ersten kanonischen Einheitsvektor im [mm] l^2 [/mm] hernehmen, oder? Mit diesem folgt
[mm] \|Ax\|_{2} [/mm] = [mm] |x_1| [/mm] = [mm] \|x\|_{2}. [/mm]

Bezug
                        
Bezug
Operatornorm berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:35 Do 16.07.2015
Autor: fred97


> Ahhh, du hast Recht! Für die untere Schranke könnte ich
> dann doch einfach den ersten kanonischen Einheitsvektor im
> [mm]l^2[/mm] hernehmen, oder? Mit diesem folgt
>  [mm]\|Ax\|_{2}[/mm] = [mm]|x_1|[/mm] = [mm]\|x\|_{2}.[/mm]  

Mit x meinst Du hoffentlich x=(1,0,0,0,...), also [mm] x_1=1 [/mm] und [mm] x_n=0 [/mm] für n>1.

Wenn Du es so meinst, dann stimmts.

FRED


Bezug
                        
Bezug
Operatornorm berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:35 Do 16.07.2015
Autor: Laura22

[mm] x_1 [/mm] ist hier natürlich 1... aber der gewählte [mm] l^2-Vektor [/mm] müsste nat. trotzdem gehen. Im übrigen vielen Dank für die Hilfe!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]