matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenOperator/Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - Operator/Abbildung
Operator/Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Operator/Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:25 Mi 04.08.2010
Autor: Wurzel2

Hallo.

Wenn von einem selbstadjungierten Operator eines endlichdimensionalen Skalarproduktraumes die Sprache ist, kann ich dann auch von einer selbstadjungierten Abbildung eines endlichdimensionalen Vektorraumes mit Skalarprodukt, also euklidisch oder unitär, reden? Bzw von einer selbstandjungierten Matrix?

Ich hatte nämlich nie Funktionalanalysis in der anscheinend die Begriffe Operator und so vorkommen.

Danke im Voraus.




        
Bezug
Operator/Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:57 Mi 04.08.2010
Autor: kantenkoenig

Ok ich versuchs mal so. Sei $V$ ein endlichdimensionaler [mm] $\mathbb{K}$-VR, [/mm] etwa [mm] $V=\sum_{i=1}^n\mathbb{K}v_i$ [/mm] und $F$ ein Endomorphismus mit [mm] $\langle F(v),w\rangle=\langle v,F(w)\rangle$, [/mm] wobei [mm] $\mathcal{B}=(v_1,\ldots,v_n)$ [/mm] eine ON-Basis sind so ist [mm] $M_{\mathcal{B}}(F)$ [/mm] hermitisch bzw. symmetrisch.  Ein stetiger Operator ist eine lineare Abbildung zwischen zwei normierten Vektorräumen.  Die Abbildung $F$ ist stetig da [mm] $\exists M>0\forall x\in V:\left\|Fx\right\|\leq M\left\|x\right\|$ [/mm] ist, denn die Operatornorm ist in diesem Fall gerade der größte Eigenwert. Damit ist $F$ ein stetiger selbstadjungierter Operator.

Bezug
                
Bezug
Operator/Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:45 Do 05.08.2010
Autor: fred97


> Ok ich versuchs mal so. Sei [mm]V[/mm] ein endlichdimensionaler
> [mm]\mathbb{K}[/mm]-VR, etwa [mm]V=\sum_{i=1}^n\mathbb{K}v_i[/mm] und [mm]F[/mm] ein
> Endomorphismus mit [mm]\langle F(v),w\rangle=\langle v,F(w)\rangle[/mm],
> wobei [mm]\mathcal{B}=(v_1,\ldots,v_n)[/mm] eine ON-Basis sind so
> ist [mm]M_{\mathcal{B}}(F)[/mm] hermitisch bzw. symmetrisch.  Ein
> stetiger Operator ist eine lineare Abbildung zwischen zwei
> normierten Vektorräumen.  Die Abbildung [mm]F[/mm] ist stetig da
> [mm]\exists M>0\forall x\in V:\left\|Tx\right\|\leq M\left\|x\right\|[/mm]

Was ist denn jetzt T ?   T=F ?





> ist, denn die Operatornorm ist in diesem Fall gerade der
> größte Eigenwert.

Das stimmt so nicht !  Ist z.B. T nilpotent und [mm] \ne [/mm] 0, so ist ||T|| [mm] \ne [/mm] 0, aber T hat nur den Eigenwert 0

Ist T ein  selbstadjungierter Operator auf einem endlichdim. Raum, so gilt:

              $||T||= max [mm] \{|\lambda|: \lambda~ ist ~Eigenwert~ von ~ T \}$ [/mm]


FRED



> Damit ist [mm]F[/mm] ein stetiger
> selbstadjungierter Operator.


Bezug
        
Bezug
Operator/Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:39 Do 05.08.2010
Autor: fred97


> Hallo.
>  
> Wenn von einem selbstadjungierten Operator eines
> endlichdimensionalen Skalarproduktraumes die Sprache ist,
> kann ich dann auch von einer selbstadjungierten Abbildung
> eines endlichdimensionalen Vektorraumes mit Skalarprodukt,
> also euklidisch oder unitär, reden? Bzw von einer
> selbstandjungierten Matrix?
>  
> Ich hatte nämlich nie Funktionalanalysis in der
> anscheinend die Begriffe Operator und so vorkommen.


Das ist in der Tat so. In der Funktionalanalysis:

            linearer Operator= lineare Abbildung


FRED

>  
> Danke im Voraus.
>  
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]