matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesOffene Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis-Sonstiges" - Offene Mengen
Offene Mengen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Offene Mengen: offene Mengen bestimmen
Status: (Frage) beantwortet Status 
Datum: 23:57 Do 08.04.2010
Autor: alina00

Aufgabe
Sei (M; d) ein metrischer Raum und d* : MxM ! R→d*(x,y) := d(x; y)/(1 + d*(x,y))
. Man zeige, dass auch (M, d*)
ein metrischer Raum ist und in beiden Fällen die gleichen    o ffenen Mengen induziert werden.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Also wie man zeigt dass es ein metrischer Raum ist kriege ich glaub ich hin, dafür gibt es ja diese drei Punkte, aber wie ich zeige dass die gleichen offenen Mengen induziert werden habe ich gar keine Ahnung. Ich verstehe auch nicht wirklich den Unterschied zwischen einer offenen Kugel und einer offenen Menge.
Eine offene Kugen ist ja [mm] B_{r}(x)=Die [/mm] Menge der y aus X mit d(x,y)<r
und eine offene Menge ist ja wenn sie nur innere Punkte enthält und innere Punkte sind die Punkte die eine epsilon-Umgebung haben, die ganz in der Menge liegt
Danke für die Antworten.

        
Bezug
Offene Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:01 Fr 09.04.2010
Autor: SEcki


> Sei (M; d) ein metrischer Raum und d* : MxM ! R→d*(x,y)
> := d(x; y)/(1 + d*(x,y))

Mache dich doch bitte mit dem Formeleditor vertraut, das wäre gut! Das zweite [m]d^\star[/m] ist sicherlich ein d, oder?

Und: ist die Frage wirklich für die Oberstufe? Wo ist die aufgetreten?

> Also wie man zeigt dass es ein metrischer Raum ist kriege
> ich glaub ich hin, dafür gibt es ja diese drei Punkte,
> aber wie ich zeige dass die gleichen offenen Mengen
> induziert werden habe ich gar keine Ahnung.

Tip: Fixiere [m]x,\varepsilon[/m]. Finde nun ein [m]\delta[/m], so dass für alle y mit [m]d(x,y)<\varepsilon[/m] dann [m]d^\star(x,y)<\delta[/m] gilt. Und andersrum. Warum reicht das dann?

> Ich verstehe
> auch nicht wirklich den Unterschied zwischen einer offenen
> Kugel und einer offenen Menge.

Eine offene Menge ist Vereinigung offener Kugeln, aber nicht andersherum.

SEcki

Bezug
                
Bezug
Offene Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:18 Sa 10.04.2010
Autor: alina00

Hallo, danke für die schnelle Antwort, den Unrerschied habe ich jetzt verstanden, aber wie finde ich denn so ein [mm] \delta?? [/mm] Ich hab leider wirklich gar keine Ahnung wie ich das machen soll

Bezug
                        
Bezug
Offene Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 So 11.04.2010
Autor: rainerS

Hallo!

> Hallo, danke für die schnelle Antwort, den Unrerschied
> habe ich jetzt verstanden, aber wie finde ich denn so ein
> [mm]\delta??[/mm] Ich hab leider wirklich gar keine Ahnung wie ich
> das machen soll

Du weisst doch aus der Definition des Abstandes [mm] $\d^\ast$, [/mm] dass

[mm] d^\ast(x,y) = \bruch{d(x,y)}{1+d(x,y)} [/mm]

ist.

Jetzt nimm an, dass [mm] $d(x,y)<\varepsilon$ [/mm] ist.

Dann musst du noch das Umgekehrte nachweisen, also [mm] $d^\ast(x,y)<\varepsilon$ [/mm] annehmen, und eine Abschätzung für $d(x,y)$ angeben.

  Viele Grüße
    Rainer

Bezug
                                
Bezug
Offene Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:54 Mo 12.04.2010
Autor: alina00

Danke für die Hilfe, aber ich verstehe das irgendwie nicht. Wie kann ich das denn abschätzen, ich weiß doch gar nichts darüber??

Bezug
                                        
Bezug
Offene Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:35 Di 13.04.2010
Autor: statler

Hallo und [willkommenmr]

> Danke für die Hilfe, aber ich verstehe das irgendwie
> nicht. Wie kann ich das denn abschätzen, ich weiß doch
> gar nichts darüber??  

Doch, das weißt du, du kennst deine Voraussetzung. Also wenn d < [mm] \varepsilon [/mm] ist, dann ist 1 + d > 1 (das gilt sowieso, weil d eine Metrik und folglich d > 0 ist) und damit d/(1+d) < d < [mm] \varepsilon. [/mm]

Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]