matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikObservable QM
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Physik" - Observable QM
Observable QM < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Observable QM: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:47 Di 26.05.2009
Autor: Phecda

hi
in meinem QM buch steht:

Wird ein System durch eine stationäre Wellenfkt [mm] \Psi(r) [/mm] charakterisiert, so lautet die Bedingung, dass für eine Observable, dargestellt durch den Operator A, bei jeder Messung der Wert a auftritt:

[mm] \integral_{}^{}{\Psi(r)^\*[(A-a)^2 \Psi(r) d^3x} [/mm]

Der Messwert a ist in diesem Fall identisch mit dem Mittelwert

a = <A> = [mm] \integral_{}^{}{\Psi(r)^\*(A \Psi(r)) d^3x} [/mm]

okay meine frage ist, warum die erste Gleichung immer gilt, wenn man bei einer Messung stehts die Observable a misst?
Und den zusammenhang zu <A> ist mir auch etwas undeutlich....
mein buch erklärt es auch iwie nicht...
wäre toll wenn mir jmd hier helfen kann :-) danke

        
Bezug
Observable QM: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:06 Di 26.05.2009
Autor: leduart

Hallo
Das erste ist ein Ausdruck, keine Gleichung.
Gruss leduart

Bezug
        
Bezug
Observable QM: Antwort
Status: (Antwort) fertig Status 
Datum: 07:44 Mi 27.05.2009
Autor: Kroni

Hi,

deine erste Gleichung beschreibt die Standardabweichung [mm] $\Delta^2 [/mm] a$.

Kann es sein, dass dahinter noch steht, dass diese gleich Null ist?

LG

Kroni


Bezug
                
Bezug
Observable QM: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:02 Mi 27.05.2009
Autor: Phecda

hallo
ja sorry
=0 muss noch da stehen. okay also wird die standardabweichung so definiert?
und wieso? ich dachte das sie ist [mm] -^2? [/mm]
bin mir noch nicht so sicher wie die ganzen formeln zusammenhängen ..

Bezug
                        
Bezug
Observable QM: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:34 Mi 27.05.2009
Autor: Kroni

Hi,

die Standardabweichung ist doch sowas wie [mm] $\int\,dx\, \psi^* (A-a)^2 \psi [/mm] $, wobei a der Erwartungswert ist: [mm] $a=\int\,\dx\,\psi^{\*} [/mm] A [mm] \psi$, [/mm] und [mm] $<\psi|\psi>=1$ [/mm]

Wenn man sich das umformt, kommt man zu folgendem Ausdruck:

[mm] $\int\,dx\, \psi^{\*} (A-a)^2 \psi [/mm] = [mm] \int\,dx\,\psi^{\*} [A^2-2\cdot a\cdot [/mm] A + [mm] a^2] \psi [/mm] = [mm] \int\,\dx\,\psi^{\*} A^2 \psi [/mm] -2a [mm] \underbrace{\int\,\dx\,\psi^{\*} A \psi}_{a} [/mm] + [mm] a^2 \underbrace{\int\,dx\,\psi^{\*}\psi}_{1}=$\int\,\dx\,\psi^{\*} A^2 \psi [/mm] - [mm] a^2$ [/mm]

Die eigentliche Def. der Std-Abweichung ist die obere, die ist aber (nach der Rechnung) voellig aequivalent zu deiner.


Wenn du jetzt eine Messung machst, und die Standardabweichung 0 ist, dann misst du immer und immer wieder den "richtigen" Wert a.

LG

Kroni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]