matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationObersummen/Integrationsgrenzen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Obersummen/Integrationsgrenzen
Obersummen/Integrationsgrenzen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Obersummen/Integrationsgrenzen: Idee
Status: (Frage) überfällig Status 
Datum: 00:50 Sa 21.04.2012
Autor: Melvissimo

Aufgabe
Berechnen Sie folgenden Grenzwert:
[mm] \lim_{n \to \infty}\bruch{1}{n^2}\sum_{j=1}^{2n}j \cdot e^{\bruch{j}{n}}. [/mm]


Guten Abend,

ich habe eigentlich kein Problem mit dieser Aufgabe, mir ist nur eine Sache nicht ganz klar... Ich schildere am besten mal meinen Gedankengang:

[mm] \lim_{n \to \infty}\bruch{1}{n^2}\sum_{j=1}^{2n}j \cdot e^{\bruch{j}{n}} [/mm]
[mm] = \lim_{n \to \infty}\sum_{j=1}^{2n} \bruch{1}{n}*\bruch{j}{n} \cdot e^{\bruch{j}{n}} [/mm]
[mm]= \lim_{n \to \infty}\sum_{j=1}^{2n} (\bruch{j}{n} - \bruch{j-1}{n} )*\bruch{j}{n} \cdot e^{\bruch{j}{n}} [/mm]. Nun habe ich k=2n substituiert...
[mm]= \lim_{k \to \infty}\sum_{j=1}^{k} (\bruch{j}{k} - \bruch{j-1}{k} )*4*\bruch{j}{k} \cdot e^{2*\bruch{j}{k}} [/mm]
[mm] = \integral_{0}^{1} 4x*e^{2x}\, dx [/mm]
[mm] = e^2 + 1 [/mm]
Das alles ist ja ganz nett, aber mir ist aufgefallen, dass ich bereits an der Stelle [mm] \lim_{n \to \infty}\sum_{j=1}^{2n} (\bruch{j}{n} - \bruch{j-1}{n} )*\bruch{j}{n} \cdot e^{\bruch{j}{n}} [/mm] eine Art oberes Riemann-Integral hatte. Leider ging die Summe bis 2n statt bis n, weswegen ich substituiert habe. Hätte man stattdessen angenommen, dass
[mm] \lim_{n \to \infty}\sum_{j=1}^{2n} (\bruch{j}{n} - \bruch{j-1}{n} )*\bruch{j}{n} \cdot e^{\bruch{j}{n}} [/mm]
[mm] = \integral_{0}^{2} x*e^{x}\, dx [/mm] mit der Begründung, dass die Summe jetzt halt bis 2n läuft statt bis n, so wäre man mit weniger Rechenaufwand auf dasselbe Ergebnis gekommen... Das kam mir ein bisschen sehr auffällig für nen Zufall vor. Kann ich die Integrationsgrenzen einfach proportional mit dem Ende der Summe mitwachsen lassen, vorausgesetzt ich habe eine geeignete Zerlegung? Denn wir haben Obersummen nur mit n als Ende der Summe definiert...

Danke für Antworten,
Melvissimo


        
Bezug
Obersummen/Integrationsgrenzen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 Mo 23.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]