matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieObersumme/Untersumme
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrationstheorie" - Obersumme/Untersumme
Obersumme/Untersumme < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Obersumme/Untersumme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Mo 12.03.2012
Autor: quasimo

Aufgabe
Sei T={0,1/4,1/2,3/4,1} eine Zerlegung des Intervalls [0, 1]. Man ermittle
für f(x) = 1 - [mm] x^2 [/mm] die Ober- und Untersumme zu dieser Zerlegung und
vergleiche diese Werte mit [mm] \integral_{0}^{1}{f(x) dx} [/mm]

f(0) = 1
f(1)=0
Dann hab ich mir die Monotonie der Funktion angeschaut im Intervall [0,1]
Sei [mm] \varepsilon [/mm] >0
f (x) > f (x + [mm] \varepsilon) [/mm]
1- [mm] x^2 [/mm] > 1 - [mm] x^2 [/mm] -2x [mm] \varepsilon [/mm] - [mm] \epsilon^2 [/mm]
0 > -2x [mm] \varepsilon [/mm] - [mm] \epsilon^2 [/mm]
=> fallend

Obersumme:
[mm] T={x_0 < x_1 < .. O(f,T) = [mm] \sum_{j=1}^{n} [/mm] sup f  ( [mm] x_j [/mm] - [mm] x_{j-1}) [/mm]
sup f vom Intervall [mm] [x_{j-1}, x_j] [/mm]

sup f in dem teilintervall ist doch der Wert ganz links, da die Funktion monoton fallend ist. f(0)=1 Und die Intervalllänge ist 1/4
Die obere Summen-Grenze sind die Anzahl der Teilintervalle, also hier 5. Aber was ist genau j in dem Beispiel?

O(f,T) = [mm] \sum_{j=1}^{5} [/mm] 1*  (1/4) = 1/4 [mm] *\sum_{j=1}^{5} [/mm] 1 = 1/4 * 4 = 1

O(f,T) = [mm] \sum_{j=1}^{n} [/mm] inf f  ( [mm] x_j [/mm] - [mm] x_{j-1}) [/mm]
inf f vom Intervall [mm] [x_{j-1}, x_j] [/mm]

U(f,T)= [mm] \sum_{j=1}^5 [/mm] 0 * 1/4 =0

Ich hab das Gefühl, das stimmt so nicht ganz - ich mach das nämlich zum ersten Mal ;)

> vergleiche diese Werte mit [mm] \integral_{0}^{1}{f(x) dx} [/mm]

Meint man da, wie wir es in der Schule gmacht haben? Weil offiziell haben wir das ja noch nicht gemacht in der Vorlesung.
[mm] \integral_{0}^{1}{f(x) dx}= [/mm] x - [mm] x^3/3 [/mm] = 2/3




        
Bezug
Obersumme/Untersumme: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Mo 12.03.2012
Autor: Diophant

Hallo,

> Sei T={0,1/4,1/2,3/4,1} eine Zerlegung des Intervalls [0,
> 1]. Man ermittle
> für f(x) = 1 - [mm]x^2[/mm] die Ober- und Untersumme zu dieser
> Zerlegung und
> vergleiche diese Werte mit [mm]\integral_{0}^{1}{f(x) dx}[/mm]
>
> f(0) = 1
> f(1)=0
> Dann hab ich mir die Monotonie der Funktion angeschaut im
> Intervall [0,1]
> Sei [mm]\varepsilon[/mm] >0
> f (x) > f (x + [mm]\varepsilon)[/mm]
> 1- [mm]x^2[/mm] > 1 - [mm]x^2[/mm] -2x [mm]\varepsilon[/mm] - [mm]\epsilon^2[/mm]
> 0 > -2x [mm]\varepsilon[/mm] - [mm]\epsilon^2[/mm]
> => fallend

das ist richtig, geht aber auch einfacher (wenn man die Ableitung verwenden darf).

>
> Obersumme:
> [mm]T={x_0 < x_1 < ..
> O(f,T) = [mm]\sum_{j=1}^{n}[/mm] sup f (
> [mm]x_j[/mm] - [mm]x_{j-1})[/mm]
> sup f vom Intervall [mm][x_{j-1}, x_j][/mm]
>
> sup f in dem teilintervall ist doch der Wert ganz links, da
> die Funktion monoton fallend ist. f(0)=1 Und die
> Intervalllänge ist 1/4
> Die obere Summen-Grenze sind die Anzahl der
> Teilintervalle, also hier 5.


Ab hier wird es falsch. Intervalle sind es 4.

> Aber was ist genau j in dem
> Beispiel?

j ist wie immer der Summationsindex.

>
> O(f,T) = [mm]\sum_{j=1}^{5}[/mm] 1* (1/4) = 1/4 [mm]*\sum_{j=1}^{5}[/mm] 1 =
> 1/4 * 4 = 1

Diese Rechnung verstehe ich nun nicht mehr. Wo sind jetzt die Suprema von oben geblieben?

Überlege nochmal in aller Ruhe, was du da gerechnet hast. Deine Idee war nämlich schon richtig, aber dann musst du sie auch ausführen!

[Zur Kontrolle: die Obersumme sollte hier 25/32 sein.]

>
> O(f,T) = [mm]\sum_{j=1}^{n}[/mm] inf f ( [mm]x_j[/mm] - [mm]x_{j-1})[/mm]
> inf f vom Intervall [mm][x_{j-1}, x_j][/mm]
>
> U(f,T)= [mm]\sum_{j=1}^5[/mm] 0 * 1/4 =0

Das ist natürlich ebenso falsch. Hier müssen die Infima -  aber die richtigen - summiert werden.

[Zur Kontrolle: die Untersumme sollte hier 17/32 sein.]

Ich habe so eine Ahnung, wo dein Denkfehler liegt: sup(f) bzw. inf(f) sind jeweils die Suprema bzw. Infima aus dem jeweiligen Teilintervall der Zerlegung, nicht aus [0,1].

Hilft dir das ein Stück weiter?


Gruß, Diophant



Bezug
                
Bezug
Obersumme/Untersumme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Mo 12.03.2012
Autor: quasimo


> das ist richtig, geht aber auch einfacher (wenn man die Ableitung verwenden darf).

f'(x) = -2x
Und dann setzte ich 0 und 1 ein oder wie?

>  Ich habe so eine Ahnung, wo dein Denkfehler liegt: sup(f) bzw. inf(f) sind jeweils die Suprema bzw. Infima aus dem jeweiligen Teilintervall der Zerlegung, nicht aus [0,1].

Ja das war ein Fehler von mir!

Die Teilintervalle sind [0,1/4], [1/4,1/2],[1/2,3/4],[3/4,1]
genau also 4 Intervalle.
sup f([0,1/4]) = f(0)=1
sup f([[1/4,1/2]) = f(1/4) =15/16
sup f([1/2,3/4]) = f(1/2)= 3/4
sup f([3/4,1]) = f(3/4) = 7/16

O(f,T) = 1* 1/4 +15/16 * 1/4 + 3/4 * 1/4 + 7/16 * 1/4 = 25/32
Stimmt, aber wie Bring ich das auf ein eleganteres Summenzeichen?Oder ist das hier gar nicht so gelegen es in SUmmenform zu bringen?

inf f([0,1/4]) = f(1/4)=15/16
inf f([[1/4,1/2]) = f(1/2) =3/4
inf f([1/2,3/4]) = f(3/4)= 7/16
inf  f([3/4,1]) = f(1) = 0

U(f,T) = 15/16 * 1/4 + 3/4 * 1/4 + 7/16 * 1/4 = 17/32


> vergleiche diese Werte mit $ [mm] \integral_{0}^{1}{f(x) dx} [/mm] $

Das hat im ersten beitrag so gestimmt?

Bezug
                        
Bezug
Obersumme/Untersumme: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Mo 12.03.2012
Autor: Diophant

Hallo,

bei dem Nachweis der Monotonie mit der Ableitung kann man einfach argumentieren, dass für [mm] x\ge{0} [/mm] sicherlich [mm] f'(x)\le{0} [/mm] ist.

Beim Summenzeichen schreibe

[mm] f\left(\bruch{j-1}{4}\right) [/mm]

für die Ober- und

[mm] f\left(\bruch{j}{4}\right) [/mm]

für die Untersumme als Summand.

Das Integral passt.

Gruß, Diophant




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]