matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisObersumme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Obersumme
Obersumme < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Obersumme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:13 Do 20.07.2006
Autor: didi_160

Aufgabe
Sei [mm] f:=[0,1]\to \IR [/mm] die Funktion [mm] f(x)=x^2. [/mm] Das Intervall [0,1] wird äquidistant durch [mm] Z_n:= [/mm] { [mm] \bruch{k}{2^n}|1 \le k<2^n [/mm] } geteilt. Berechnen Sie die Obersummen [mm] O(Z_n,f) [/mm] und  [mm] \limes_{n\rightarrow\infty}O(Z_n,f). [/mm]

Hallo,

ich habe zu der Aufgabe ein paar Fragen zur Berechnung des Grenzwertes.

Duch [mm] Z_n [/mm] wird [0,1] gleichmäßig geteilt. Für n=1 gilt [mm] Z_1={ \bruch{1}{2}}, [/mm] für n=2 gilt [mm] Z_2={ \bruch{1}{4}, \bruch{2}{4}, \bruch{3}{4}} [/mm]   usw....
Die Obersummen berechnen sich nach [mm] O(Z_n,f)=\summe_{=1}^{n}(Z_i_+_1-Z_i)*sup(f|Z_i,Z_i_+_1). [/mm]
Für [mm] O(Z_3,f) [/mm] ergibt sich damit z.B. [mm] O(Z_3,f)= \bruch{1}{8}*( (\bruch{1}{8})^2+(\bruch{2}{8})^2+(\bruch{3}{8})^2+(\bruch{4}{8})^2+(\bruch{5}{8})^2+(\bruch{6}{8})^2+(\bruch{7}{8})^2+(\bruch{8}{8})^2) [/mm]
Für konkrete Werte n ist das soweit klar. Aber wie sieht  [mm] O(Z_n,f) [/mm] in allgemeiner Form aus?
Und wie kann ich danach von dem allgemeingültigen Ausdruck [mm] O(Z_n,f) [/mm]  den Grenzwert für [mm] n->\infty [/mm] berechnen?
Wer ist so nett und hilft mir ein Stück weiter?
Besten Dank im Voraus.
Gruß
didi_160

        
Bezug
Obersumme: Antwort
Status: (Antwort) fertig Status 
Datum: 08:55 Do 20.07.2006
Autor: Event_Horizon

Wenn du ein INtervall [0;b] hast, wird das in n Intervalle der Breite h=b/n unterteilt. Du hast dann

[mm] $\integral_0^b f=\summe_{i=1}^n h*f(ih)=h*\summe_{i=1}^n [/mm] f(ih)$

und in dem Fall mit f=x²

[mm] $\integral_0^b x^2dx=h*\summe_{i=1}^n i^2h^2=h^3*\summe_{i=1}^n i^2=\bruch{b^3}{n^3}*\summe_{i=1}^n i^2$ [/mm]

Nun kannst du die Summenformel für quadrate benutzen. Wenn du dies danach mit dem n³ im Nenner verrechnest, kannst du den Grenzwert n->oo problemlos bestimmen, der sollte ja 1/3 sein.

Im Prinzip läuft das bei allen Potenzen so.

Integrierst du andere Funktionen, wird es meistens etwas komplizierter.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]