matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenOberflächenintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Oberflächenintegral
Oberflächenintegral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Oberflächenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:39 Mo 19.05.2008
Autor: Martinius

Aufgabe
Gegeben sei das Vektorfeld

[mm] $\vec b(\vec r)=|\vec r|^{-2}*\begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$. [/mm]

Berechnen Sie das Oberflächenintegral über die Zylinderfläche der Höhe H und des Radius R im Intervall [mm] -\pi \le \varphi \le \pi. [/mm]

Hallo,

die Aufgabe konnte ich rechnen (im Buch war in der Lösung ein Fehler):

[mm] $\integral_{F}\vec b(\vec r)*d\vec a=\integral_{0}^{H}\integral_{-\pi}^{\pi}\bruch{1}{R^2+z^2}*\begin{pmatrix} x \\ y \\ 0 \end{pmatrix}*\begin{pmatrix} cos(\varphi) \\ sin(\varphi) \\ 0 \end{pmatrix}*R*d\varphi*dz$ [/mm]

[mm] $=\integral_{0}^{H}\integral_{-\pi}^{\pi}\left(\bruch{x*cos(\varphi)}{R^2+z^2}+\bruch{y*sin(\varphi)}{R^2+z^2}\right)*R*\;d\varphi*dz$ [/mm]

[mm] $=\integral_{0}^{H}\integral_{-\pi}^{\pi}\left(\bruch{R*cos^2(\varphi)}{R^2+z^2}+\bruch{R*sin^2(\varphi)}{R^2+z^2}\right)*R*d\varphi*dz$ [/mm]

[mm] $=\integral_{0}^{H}\integral_{-\pi}^{\pi}\bruch{R^2}{R^2+z^2}*\;d\varphi*dz$ [/mm]

[mm] $=2\pi*\integral_{0}^{H}\bruch{1}{1+\left(\bruch{z}{R}\right)^2}*dz$ [/mm]

[mm] $=2\pi*R*arctan\left(\bruch{H}{R}\right)$ [/mm]

Meine Frage: was kann ich mir unter diesem Ergebnis vorstellen?

Die Integrationsoberfläche kann ich mir vorstellen und das Vektorfeld. Aber das Oberflächenintegral?

Vielen Dank im voraus für eine Antwort.

LG, Martinius


        
Bezug
Oberflächenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 22:58 Mo 19.05.2008
Autor: Event_Horizon

Hallo!

Dieses Oberflächenintegral beschreibt einen Fluß durch die Oberfläche.

Du hast im Ursprung eine Quelle, aus der irgendwas rausströmt. Die Strömungsgeschwindigkeit und -Richtung an jedem Punkt [mm] \vec{r} [/mm] soll dann durch das Vektorfeld beschrieben werden.

Das Integral bestimmt dann das Volumen, das in einer Zeiteinheit durch die Oberfläche fließt.

Es gibt aber noch andere Interpretationen, es kommt immer auf den Kontext an.

So besagt eine der vier Maxwellgleichungen, daß das Integral des E-Feldes über die geschlossene Oberfläche eines Volumens gleich der im Volumen eingeschlossenen Ladung ist. Die Ladung ist die Quelle des E-Feldes.



So, wie dein Feld aussieht, könnte es das Feld eines geladenen, graden Leiters entlang der z-Achse beschreiben, denn dieses zeigt immer vom Leiter weg (das macht dein Vektor) und ist proportional zu 1/r  (das zweite r kürzt sich mit der Länge des Vektors, sodaß dieser zu einem Richtungsvektor wird).

Zur zuletzt genannten Argumentation muß jedoch gesagt werden, daß hier die Stirnflächen nicht berücksichtigt wurden, durch die gewöhnlich ja auch ein Feld geht. Wenn man aber nur einen Ausschnitt aus einem recht langen geladenen Leiter betrachtet, dann hast du tatsächlich die Ladung auf einem Stück der Länge H berechnet, denn dann ist das Feld in Richtung z-Achse vernachlässigbar.

Bezug
                
Bezug
Oberflächenintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:09 Mo 19.05.2008
Autor: Martinius

Hallo Event Horizon,

vielen Dank für die Antwort.

LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]