matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenOberflächenintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Oberflächenintegral
Oberflächenintegral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Oberflächenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:45 Mi 13.12.2006
Autor: Molch

Aufgabe
Es gilt den Flächeninhalt der Flächenstücke zu berechnen, deren Punkte (x,y,z) der Relation genügt:

[mm] x^{2}+y^{2} \le a^{2} [/mm]
a>0
[mm] z=\bruch{xy}{a} [/mm]

mit Zylinderkoordinaten

Hallo!

Ich versuche mich derzeit an obiger Aufgabe, scheitere jedoch.

Ich habe die Zylinderkoordinaten "aufgestellt":

[mm] \vec{x}=\vektor{a*cos(\delta) \\ b*sin(\delta) \\ z} [/mm]

Dann die partiellen Ableitungen nach z und [mm] \delta [/mm] gebildet, und erhalte

[mm] \vmat{ \vec{x}_{\delta} \times \vec{x}_{z} } [/mm] = a

Nun wollte ich die Fläche bestimmen mittels:

[mm] B=4*\integral_{\delta=0}^{\bruch{\pi}{2}}{\integral_{z=0}^{a*cos(\delta)*sin(\delta)}{a dz} d\delta} [/mm]

Die Fläche ist ja eine Art Sattelfläche, also symmetrisch, deswegen meine ich sie so berechnen zu können. Das erhaltene Ergebnis stimmt jedoch leider nicht mit dem Ergebnis der Lösung überein: [mm] (2/3)*\pi*(2\wurzel[2]{2}-1)a^{2} [/mm]

Über Antworten und Hilfen würde ich mich freuen!

Vielen Dank,

Gruß

        
Bezug
Oberflächenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 Mi 13.12.2006
Autor: MatthiasKr

Hallo,

> Es gilt den Flächeninhalt der Flächenstücke zu berechnen,
> deren Punkte (x,y,z) der Relation genügt:
>  
> [mm]x^{2}+y^{2} \le a^{2}[/mm]
>  a>0
>  [mm]z=\bruch{xy}{a}[/mm]
>  
> mit Zylinderkoordinaten


hmm, ich werde aus deiner aufgabe nicht so ganz schlau, denn zylinderkoordinaten sind imho für räumliche integrale gedacht und nicht für flächenintegrale.

ich würde einfach die parametrisierung der fläche nehmen, das flächenelement bestimmen und dann integrieren. das ist dann ein 2-dimensionales integral über eine kreisscheibe, so dass du vermutlich polarkoordinaten verwenden könntest.

Gruß
Matthias


Bezug
                
Bezug
Oberflächenintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:55 Fr 15.12.2006
Autor: Molch

Dankesehr!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]