matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisOberfläche eines Hyperboloids?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Oberfläche eines Hyperboloids?
Oberfläche eines Hyperboloids? < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Oberfläche eines Hyperboloids?: Lösungsüberprüfung
Status: (Frage) beantwortet Status 
Datum: 14:07 Di 08.03.2005
Autor: OBdA-trivial

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Leute,
es geht um die Berechnung der Oberfläche eines Hyperboloids mit der Vorgabe [mm] x^{2} + y^{2} < 1 [/mm] und [mm] z = x * y [/mm] ! Ich habe das ganze über die Parametrisierung [mm] (u,v) \right\} \to (u,v,u*v) [/mm] und anschließende Transformation  mittels [mm] (r,\varphi) \right\} \to (r * \cos \varphi, r * \sin \varphi) [/mm] gelöst. Probleme hat mir bereitet, die stetige Differenzierbarkeit bei der Umkehrfunktion der Transformationsfunktion zu zeigen(die Trafo-Funktion muss ja ein Diffeomorphismus sein). Außerdem macht mich meine Lösung ein wenig stutzig: [mm] Vol_2 = \bruch{2}{3} * \pi * ( \wurzel{8} - 1) [/mm] !
Könnte das von euch mal jemand überprüfen?

Mit parametrisierten Grüßen
Ralf

        
Bezug
Oberfläche eines Hyperboloids?: Bestätigung
Status: (Antwort) fertig Status 
Datum: 20:00 Mi 09.03.2005
Autor: MathePower

Hallo,

ich habe das nachgerechnet und das Ergebnis stimmt.

Ich habe die folgende Formel für die Oberfläche benutzt:

[mm]A_{0} \; = \;\int\limits_{0}^{2\pi } {\int\limits_{0}^{1} {\sqrt {r^{2} \; + \;r^{2} \;f_{r}^{2} \; + \;f_\varphi ^{2} } } } \;dr\;d\varphi [/mm]

Für die Berechung der Ableitungen [mm]f_{r}[/mm] und [mm]f_{\varphi}[/mm] verwende folgende Funktion:

[mm]f\left( {r,\;\varphi } \right)\; = \;f\left( {x\left( {r,\;\varphi } \right),\;y\left( {r,\;\varphi } \right)} \right)[/mm]

Leite dann diese Gleichung nach [mm]r[/mm] bzw. [mm]\varphi[/mm] ab.

Gruß
MathePower


Bezug
                
Bezug
Oberfläche eines Hyperboloids?: Dankeschön!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:26 Do 10.03.2005
Autor: OBdA-trivial

Wunderbar. Dankeschön! Deine Formel hilft mir sicherlich bei der Überprüfung nur rechnen sollte ich das ganze auch mittels Parametrisierung und Transformationssatz können, denn darum dreht sich das Thema bei Lebesgue und Co in AnaIII. Ich werd mal schauen wie du auf die genannte Formel für das Integral kommst. Vielleicht hilft mir das ja auch bei der Klausur schnell eine Lösung zu finden. Im Endeffekt hast du doch nur statt Parametrisierung eine Funktion als Darstellung des Hyperboloids gewählt und dort eine Transformation durchgeführt, richtig???
Gruß Ralf

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]