ONB < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:37 So 22.05.2011 | Autor: | muminek |
Also ich wollte nur ganz kurz etwas allgemeines fragen: wenn ich zu der Matrix A eine Matrix S finden will so, dass S(t)AS eine Diagonalmatrix ist ( S(t) soll für S transponiert stehen ) gehe ich wie folgt vor: Ich berechne die Eigenwerte und Eigenvektoren von A, normiere diese EV und aus dieser sich so ergebenden ONB Bilde ich S indem ich die Elemente aus der ONB als Spalten von S hinschreibe.
Wie gehe ich aber vor wenn ein Eigenwert doppelt vorkommt, also wenn z.b. eine 3x3 Matrix nur 2 Eigenwerte hat?
MfG
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:43 So 22.05.2011 | Autor: | rainerS |
Hallo!
> Also ich wollte nur ganz kurz etwas allgemeines fragen:
> wenn ich zu der Matrix A eine Matrix S finden will so, dass
> S(t)AS eine Diagonalmatrix ist ( S(t) soll für S
> transponiert stehen ) gehe ich wie folgt vor: Ich berechne
> die Eigenwerte und Eigenvektoren von A, normiere diese EV
> und aus dieser sich so ergebenden ONB Bilde ich S indem ich
> die Elemente aus der ONB als Spalten von S hinschreibe.
> Wie gehe ich aber vor wenn ein Eigenwert doppelt vorkommt,
> also wenn z.b. eine 3x3 Matrix nur 2 Eigenwerte hat?
Dann ist einer der Eigenwerte ein doppelter Eigenwert, das heisst, für diesen Eigenwert gibe es zwei linear unabhängige Eigenvektoren, während der andere Eigenwert einen Eigenvektor hat. Daraus bildest du wieder eine ONB, eventuell über das Schmidtsche Orthogonalisierungsverfahren.
(Immer vorausgesetzt, dass A überhaupt diagonalisierbar ist!)
Hier findest du ein Beispiel.
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:14 So 22.05.2011 | Autor: | muminek |
ok, danke :)
|
|
|
|