matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraON- BASIS
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - ON- BASIS
ON- BASIS < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ON- BASIS: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:26 Mi 20.04.2005
Autor: Sultan

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

hi leute ich komm bei einer aufgabe einfach nicht voran . ich wöre dankbar wenn ihr mir weiter helfen könntet meine aufgabe lautet

sei f,g [mm] \in [/mm] SO(3) mit fg,gf. man zeige, dass dann entweder bezüglich einer geeigneten ON-Basis f und g simultan diagonalgestalt haben, oder aber f,g sind Drehungen um dieselbe Drehachse

hoffe ihr könnt mir weiter helfen
danke

        
Bezug
ON- BASIS: Hinweise
Status: (Antwort) fertig Status 
Datum: 12:35 Do 21.04.2005
Autor: Gnometech

Hallo!

Also, ich werde mal einige Hinweise geben und versuchen, nicht alles zu verraten. :-)

Ganz wichtig ist folgende Tatsache (im Fischer als "Satz vom Fussball" bekannt): zu jedem $f [mm] \in SO_3(\IR)$ [/mm] ist der Eigenraum zum Eigenwert 1 mindestens eindimensional, d.h. es gibt einen Eigenvektor zum Eigenwert 1.

Daraus folgt, dass jede solche Transformation eine (möglicherweise triviale) Drehung um eine fixe Drehachse ist.

Mit diesem Wissen im Hinterkopf kann man die Aufgabe leicht angehen: falls $f = [mm] \id_V$, [/mm] so folgt, dass jede Gerade im Raum als Drehachse von $f$ angesehen werden kann, insbesondere haben $f$ und $g$ die gleiche Drehachse.

Sei also $f [mm] \not= \id_V$. [/mm] Sei [mm] $v_1 \in [/mm] V$ ein Vektor auf der Drehachse von $f$, also [mm] $f(v_1) [/mm] = [mm] v_1$. [/mm] Es gilt dann:

[mm] $g(v_1) [/mm] = [mm] g\big(f(v_1)\big) [/mm] = [mm] f\big(g(v_1)\big)$ [/mm]

Also ist [mm] $g(v_1)$ [/mm] ein Eigenvektor von $f$ zum Eigenwert 1, also ein Vielfaches von [mm] $v_1$, [/mm] da wir den trivialen Fall ausgeschlossen haben. Da $g$ Längen erhält folgt, dass einer der beiden folgenden Fälle eintritt:

Fall 1: [mm] $g(v_1) [/mm] = [mm] v_1$. [/mm] Damit haben $f$ und $g$ die gleiche Drehachse, die von [mm] $v_1$ [/mm] aufgespannte Gerade.

Fall 2: [mm] $g(v_1) [/mm] = - [mm] v_1$. [/mm] In diesem Fall spielen wir das Spiel rückwärts. Wir nehmen ein [mm] $v_2$, [/mm] das Eigenvektor von $g$ zum Eigenwert 1 ist und folgern analog, dass dann entweder [mm] $f(v_2) [/mm] = [mm] v_2$ [/mm] (gleiche Drehachse) oder aber [mm] $f(v_2) [/mm] = - [mm] v_2$. [/mm]

Damit sind schon 2 von 3 Vektoren der gesuchten ON-Basis gefunden... den Rest überlasse ich Dir. :-)

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]