matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)OLS-Regression
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Statistik (Anwendungen)" - OLS-Regression
OLS-Regression < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

OLS-Regression: Ansatzklärung
Status: (Frage) beantwortet Status 
Datum: 11:48 Sa 24.07.2010
Autor: Marcel08

Aufgabe
Der OLS-Schätzer für den Parametervektor [mm] \beta [/mm] des linearen Regressionsmodells [mm] y=X\beta+u [/mm] ist [mm] \hat\beta=(X^{T}X)^{-1}X^{T}y, [/mm] die gefitteten Werte sind mit [mm] \hat{y}=X\hat\beta [/mm] und die Residuen mit [mm] \hat{u}=y-\hat{y} [/mm] gegeben. Die Datenmatrix nehmen wir zur Vereinfachung als deterministisch an.

a) Führen Sie eine Regression der OLS-Residuen auf die Datenmatrix X durch und berechnen Sie den geschätzten Parametervektor. Interpretieren Sie das Ergebnis kurz.

b) Führen Sie eine Regression der gefitteten Werte aus der OLS-Schätzung auf die Datenmatrix X durch und berechnen Sie die Residuen dieser Regression. Interpretieren Sie das Ergebnis kurz.

Hallo!



Bei diesen beiden Aufgaben geht es mir zunächst nur um den Ansatz. Wie beginne ich also die folgenden Aufgaben? Meine Ansatzvorschläge lauten:



zu a)


[mm] \beta_{\hat{u}}=(X^{T}X)^{-1}X^{T}(y-\hat{y}) [/mm]

[mm] =(X^{T}X)^{-1}X^{T}(X\beta+u-\hat{y}) [/mm]

[mm] =(X^{T}X)^{-1}X^{T}(X\beta+u-X\hat\beta) [/mm]


Im weiteren Verlauf errechne ich unter Zuhilfenahme von E(u)=0 [mm] \hat\beta_{\hat{u}}=0. [/mm] Daraus kann man dann folgern, dass die Residuen orthogonal auf der Datenmatrix stehen; man hat also [mm] Cov(\hat{u},X)=0 [/mm]



zu b)


[mm] \hat\beta_{\hat{y}}=(X^{T}X)^{-1}X^{T}\hat{y} [/mm]

[mm] =(X^{T}X)^{-1}X^{T}X\hat\beta [/mm]


Ich erhalte dann [mm] \hat\beta_{\hat{y}}=\beta [/mm] und somit die Erwartungstreue des Schätzers durch eine Regression der gefitteten Werte auf die Datenmatrix X.




Ich bin mir nun nicht ganz sicher, ob die Ansätze meiner Rechnungen stimmen oder ob diese Rechnungen nur trivial sind. Über einen kurzen Kommentar würde ich mich freuen.





Gruß, Marcel

        
Bezug
OLS-Regression: Antwort
Status: (Antwort) fertig Status 
Datum: 14:10 Sa 24.07.2010
Autor: luis52


>  Hallo!
>  
>
>
> Bei diesen beiden Aufgaben geht es mir zunächst nur um den
> Ansatz. Wie beginne ich also die folgenden Aufgaben? Meine
> Ansatzvorschläge lauten:
>  
>
>
> zu a)
>
>
> [mm]\beta_{\hat{u}}=(X^{T}X)^{-1}X^{T}(y-\hat{y})[/mm]
>  
> [mm]=(X^{T}X)^{-1}X^{T}(X\beta+u-\hat{y})[/mm]
>  
> [mm]=(X^{T}X)^{-1}X^{T}(X\beta+u-X\hat\beta)[/mm]
>  
>
> Im weiteren Verlauf errechne ich unter Zuhilfenahme von
> E(u)=0 [mm]\hat\beta_{\hat{u}}=0.[/mm] Daraus kann man dann folgern,
> dass die Residuen orthogonal auf der Datenmatrix stehen;
> man hat also [mm]Cov(\hat{u},X)=0[/mm]

[notok]Das ist nicht gesucht.

>  
>
>
> zu b)
>
>
> [mm]\hat\beta_{\hat{y}}=(X^{T}X)^{-1}X^{T}\hat{y}[/mm]
>  
> [mm]=(X^{T}X)^{-1}X^{T}X\hat\beta[/mm]
>  
>
> Ich erhalte dann [mm]\hat\beta_{\hat{y}}=\beta[/mm] und somit die
> Erwartungstreue des Schätzers durch eine Regression der
> gefitteten Werte auf die Datenmatrix X.

[notok]

Mache zunaechst noch einmal b) mit [mm]\hat\beta_{y}= (X^{T}X)^{-1}X^{T}y[/mm].  Nutze fuer a) dieses Ergebnis zur Berechnung von


$ [mm] \hat\beta_{\hat{u}}=(X^{T}X)^{-1}X^{T}(y-\hat{y}) =(X^{T}X)^{-1}X^{T}y-(X^{T}X)^{-1}X^{T}\hat{y}=\hat\beta_{y}-\hat\beta_{\hat{y}}$. [/mm]

vg Luis






Bezug
                
Bezug
OLS-Regression: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:34 Sa 24.07.2010
Autor: Marcel08

Hallo!



> >  Hallo!

>  >  
> >
> >
> > Bei diesen beiden Aufgaben geht es mir zunächst nur um den
> > Ansatz. Wie beginne ich also die folgenden Aufgaben? Meine
> > Ansatzvorschläge lauten:
>  >  
> >
> >
> > zu a)
> >
> >
> > [mm]\beta_{\hat{u}}=(X^{T}X)^{-1}X^{T}(y-\hat{y})[/mm]
>  >  
> > [mm]=(X^{T}X)^{-1}X^{T}(X\beta+u-\hat{y})[/mm]
>  >  
> > [mm]=(X^{T}X)^{-1}X^{T}(X\beta+u-X\hat\beta)[/mm]
>  >  
> >
> > Im weiteren Verlauf errechne ich unter Zuhilfenahme von
> > E(u)=0 [mm]\hat\beta_{\hat{u}}=0.[/mm] Daraus kann man dann folgern,
> > dass die Residuen orthogonal auf der Datenmatrix stehen;
> > man hat also [mm]Cov(\hat{u},X)=0[/mm]
>  
> [notok]Das ist nicht gesucht.
>  
> >  

> >
> >
> > zu b)
> >
> >
> > [mm]\hat\beta_{\hat{y}}=(X^{T}X)^{-1}X^{T}\hat{y}[/mm]
>  >  
> > [mm]=(X^{T}X)^{-1}X^{T}X\hat\beta[/mm]
>  >  
> >
> > Ich erhalte dann [mm]\hat\beta_{\hat{y}}=\beta[/mm] und somit die
> > Erwartungstreue des Schätzers durch eine Regression der
> > gefitteten Werte auf die Datenmatrix X.
>  
> [notok]
>  
> Mache zunaechst noch einmal b) mit [mm]\hat\beta_{y}= (X^{T}X)^{-1}X^{T}y[/mm].
>  Nutze fuer a) dieses Ergebnis zur Berechnung von
>  
>
> [mm]\hat\beta_{\hat{u}}=(X^{T}X)^{-1}X^{T}(y-\hat{y}) =(X^{T}X)^{-1}X^{T}y-(X^{T}X)^{-1}X^{T}\hat{y}=\hat\beta_{y}-\hat\beta_{\hat{y}}[/mm].
>  
> vg Luis



Dann möchte ich noch einmal versuchen herauszufinden, was man mit dieser Aufgabe bezwecken möchte. Man kann also sagen, dass der Residuenschätzer [mm] \hat\beta_{\hat{u}} [/mm] für [mm] \hat\beta_{y}=\hat\beta_{\hat{y}} [/mm] 0 ist.


Dieser Fall tritt unter Anwendung der Gauß-Markov-Annahmen ein; man hätte dann quasi einen BLUE. Irgendwie kommt mir das noch immer sehr trivial vor. Ist die Aufgabe so richtig gelöst? Vielen Dank schon mal!




Gruß, Marcel

Bezug
                        
Bezug
OLS-Regression: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Sa 24.07.2010
Autor: luis52


>
>
> Dann möchte ich noch einmal versuchen herauszufinden, was
> man mit dieser Aufgabe bezwecken möchte. Man kann also
> sagen, dass der Residuenschätzer [mm]\hat\beta_{\hat{u}}[/mm] für
> [mm]\hat\beta_{y}=\hat\beta_{\hat{y}}[/mm] 0 ist.

[ok]

>
>
> Dieser Fall tritt unter Anwendung der Gauß-Markov-Annahmen
> ein; man hätte dann quasi einen BLUE.

Das macht keinen Sinn. Was ist denn der Parameter, fuer den [mm]\hat\beta_{\hat{u}}[/mm] e.t. ist?

> Irgendwie kommt mir
> das noch immer sehr trivial vor. Ist die Aufgabe so richtig
> gelöst?

[ok]


vg Luis



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]