matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgorithmen und DatenstrukturenO-Notation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algorithmen und Datenstrukturen" - O-Notation
O-Notation < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

O-Notation: Tipp zu einem Beweis zur O-Notation
Status: (Frage) beantwortet Status 
Datum: 17:06 Mo 20.04.2015
Autor: Chrizzldi

Aufgabe
Beweisen Sie, dass [mm] $\mathcal{O}(f) [/mm] = [mm] \bigcup_{g\in\mathcal{O}(f)}^{}\mathcal{O}(g)$. [/mm]
Zur Erinnerung: Für zwei Funktionen $f,g : [mm] \mathbb{N} \rightarrow \mathbb{N}$ [/mm] schreiben wir [mm] $f\in\mathcal{O}(g)$, [/mm] falls
[mm] $\exists [/mm] c > 0, [mm] \exists n_0 [/mm] > [mm] 0\forall [/mm] n [mm] \geq n_0 [/mm] : f(n) [mm] \leq [/mm] c [mm] \cdot [/mm] g(n)$.

Folgendes glaube ich verstanden zu haben:
Damit die Aussage der Aufgabe stimmt muss ich zeigen, dass

1. [mm] $g\in\mathcal{O(f)}$ [/mm] liegt.
2. die Vereinigung vieler $g(n)$ die in [mm] $\mathcal{O}(f)$ [/mm] liegen auch weiterhin in [mm] $\mathcal{O}(f)$ [/mm] liegt.
3. (habe ich etwas vergessen ?)

Überlegung zu:
1. Ich wähle [mm] $n_0 [/mm] = 1$ und $c = 1$. Eingesetzt ergibt das nach der Erinnerung aus der Aufgabendefinition: $g(n) = 1 [mm] \cdot [/mm] f(n)$.
Die Laufzeit aller g liegt also in [mm] $\mathcal{O}(f)$. [/mm]

2. Hier weiß ich nicht so genau weiter, kann ich so etwas annehmen wie: Seien $a(n), b(n) [mm] \in \mathcal{O}(f)$, [/mm] so gilt auch für diese:
$a(n) [mm] \leq c_a \cdot [/mm] f(n)$ für alle $n [mm] \geq n_a$ [/mm] (selbes für $b$). Es gilt also auch: $a(n) + b(n) [mm] \leq c_a \cdot [/mm] f(n) + [mm] c_b \cdot [/mm] f(n) = f(n) [mm] \cdot (c_a [/mm] + [mm] c_b) \leq c_x \cdot [/mm] f(n)$ für [mm] $c_x \geq c_a [/mm] + [mm] c_b$. [/mm]

Aus 1. und 2. folgt dann doch: [mm] $\mathcal{O}(f) [/mm] = [mm] \mathcal{O}(g)$, [/mm] richtig?

Danke für eure Hilfe! :)

Liebe Grüße,
Chris

        
Bezug
O-Notation: Antwort
Status: (Antwort) fertig Status 
Datum: 09:45 Di 21.04.2015
Autor: fred97


> Beweisen Sie, dass [mm]\mathcal{O}(f) = \bigcup_{g\in\mathcal{O}(f)}^{}\mathcal{O}(g)[/mm].
>  
> Zur Erinnerung: Für zwei Funktionen [mm]f,g : \mathbb{N} \rightarrow \mathbb{N}[/mm]
> schreiben wir [mm]f\in\mathcal{O}(g)[/mm], falls
>  [mm]\exists c > 0, \exists n_0 > 0\forall n \geq n_0 : f(n) \leq c \cdot g(n)[/mm].
>  
> Folgendes glaube ich verstanden zu haben:
>  Damit die Aussage der Aufgabe stimmt muss ich zeigen,
> dass
>  
> 1. [mm]g\in\mathcal{O(f)}[/mm] liegt.
>  2. die Vereinigung vieler [mm]g(n)[/mm] die in [mm]\mathcal{O}(f)[/mm]
> liegen auch weiterhin in [mm]\mathcal{O}(f)[/mm] liegt.
>  3. (habe ich etwas vergessen ?)
>  
> Überlegung zu:
>  1. Ich wähle [mm]n_0 = 1[/mm] und [mm]c = 1[/mm]. Eingesetzt ergibt das
> nach der Erinnerung aus der Aufgabendefinition: [mm]g(n) = 1 \cdot f(n)[/mm].
>  
> Die Laufzeit aller g liegt also in [mm]\mathcal{O}(f)[/mm].
>  
> 2. Hier weiß ich nicht so genau weiter, kann ich so etwas
> annehmen wie: Seien [mm]a(n), b(n) \in \mathcal{O}(f)[/mm], so gilt
> auch für diese:
>  [mm]a(n) \leq c_a \cdot f(n)[/mm] für alle [mm]n \geq n_a[/mm] (selbes für
> [mm]b[/mm]). Es gilt also auch: [mm]a(n) + b(n) \leq c_a \cdot f(n) + c_b \cdot f(n) = f(n) \cdot (c_a + c_b) \leq c_x \cdot f(n)[/mm]
> für [mm]c_x \geq c_a + c_b[/mm].
>  
> Aus 1. und 2. folgt dann doch: [mm]\mathcal{O}(f) = \mathcal{O}(g)[/mm],
> richtig?
>  
> Danke für eure Hilfe! :)
>  
> Liebe Grüße,
>  Chris


Nicht böse sein, aber obiges ist Murks.

1. Zeige  $ [mm] \mathcal{O}(f)\subseteq \bigcup_{g\in\mathcal{O}(f)}^{}\mathcal{O}(g) [/mm] $

Dazu zeige: ist [mm] h\in \mathcal{O}(f), [/mm] so ex. ein [mm] g\in \mathcal{O}(f) [/mm] mit:  [mm] h\in \mathcal{O}(g) [/mm]

2. Zeige  $ [mm] \mathcal{O}(f)\supseteq \bigcup_{g\in\mathcal{O}(f)}^{}\mathcal{O}(g) [/mm] $

Dazu zeige: ist [mm] g\in \mathcal{O}(f) [/mm] und [mm] h\in \mathcal{O}(g), [/mm] so ist [mm] h\in \mathcal{O}(f) [/mm]

Beachte noch, dass stets [mm] f\in \mathcal{O}(f) [/mm] gilt.

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]